August  2012, 5(4): 753-764. doi: 10.3934/dcdss.2012.5.753

Multiple solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian

1. 

Department of Science for Engineering and Architecture (Mathematics Section), Engineering Faculty, University of Messina, Messina, 98166, Italy

2. 

Department MECMAT, Engineering Faculty, University of Reggio Calabria, Reggio Calabria, 89100, Italy

Received  April 2011 Revised  August 2011 Published  November 2011

Using a multiple critical points theorem for locally Lipschitz continuous functionals, we establish the existence of at least three distinct solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian.
Citation: Antonia Chinnì, Roberto Livrea. Multiple solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 753-764. doi: 10.3934/dcdss.2012.5.753
References:
[1]

G. Bonanno, Some remarks on a three critical points theorem,, Nonlinear Anal., 54 (2003), 651. doi: 10.1016/S0362-546X(03)00092-0. Google Scholar

[2]

G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities,, J. Differential Equations, 244 (2008), 3031. doi: 10.1016/j.jde.2008.02.025. Google Scholar

[3]

G. Bonanno and A. Chinnì, Discontinuous elliptic problems involving the $p(x)$-Laplacian,, Math. Nachr., 284 (2011), 639. doi: 10.1002/mana.200810232. Google Scholar

[4]

G. Bonanno and A. Chinnì, Multiple solutions for elliptic problems involving the $p(x)$-Laplacian,, Le Matematiche, LXVI (2011), 105. Google Scholar

[5]

G. Bonanno and S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition,, Appl. Anal., 89 (2010), 1. doi: 10.1080/00036810903397438. Google Scholar

[6]

F. Cammaroto, A. Chinnì and B. Di Bella, Multiple solutions for a Neumann problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 71 (2009), 4486. doi: 10.1016/j.na.2009.03.009. Google Scholar

[7]

K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations,, J. Math. Anal. Appl., 80 (1981), 102. doi: 10.1016/0022-247X(81)90095-0. Google Scholar

[8]

F. H. Clarke, "Optimization and Nonsmooth Analysis," Second edition,, Classics Appl. Math., 5 (1990). Google Scholar

[9]

G. Dai, Three solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 70 (2009), 3755. doi: 10.1016/j.na.2008.07.031. Google Scholar

[10]

G. Dai, Infinitely many solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 70 (2009), 2297. doi: 10.1016/j.na.2008.03.009. Google Scholar

[11]

X. Fan and S.-G. Deng, Remarks on Ricceri's variational principle and applications to the $p(x)$-Laplacian equations,, Nonlinear Anal., 67 (2007), 3064. doi: 10.1016/j.na.2006.09.060. Google Scholar

[12]

X. Fan and C. Ji, Existence of infinitely many solutions for a Neumann problem involving the $p(x)$-Laplacian,, J. Math. Anal. Appl., 334 (2007), 248. doi: 10.1016/j.jmaa.2006.12.055. Google Scholar

[13]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl., 263 (2001), 424. doi: 10.1006/jmaa.2000.7617. Google Scholar

[14]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1,p(x)}$,, Czechoslovak Math., 41 (1991), 592. Google Scholar

[15]

A. Kristály, Infinitely many solutions for a differential inclusion problem in $\mathbbR^n$,, J. Differential Equations, 220 (2006), 511. doi: 10.1016/j.jde.2005.02.007. Google Scholar

[16]

A. Kristály, M. Mihǎilescu and V. Rǎdulescu, Two non-trivial solutions for a non-homogeneous Neumann problem: An Orlicz-Sobolev space setting,, Proc. Royal Soc. Edinburgh Sect. A, 139 (2009), 367. doi: 10.1017/S030821050700025X. Google Scholar

[17]

S. A. Marano and D. Motreanu, On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems,, Nonlinear Anal., 48 (2002), 37. doi: 10.1016/S0362-546X(00)00171-1. Google Scholar

[18]

S. A. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian,, J. Differential Equations, 182 (2002), 108. doi: 10.1006/jdeq.2001.4092. Google Scholar

[19]

M. Mihǎilescu, Existence and multiplicity of solutions for a Neumann problem involving the $p(x)$-Laplace operator,, Nonlinear Analysis, 67 (2007), 1419. doi: 10.1016/j.na.2006.07.027. Google Scholar

[20]

D. S. Moschetto, A quasilinear Neumann problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 71 (2009), 2739. doi: 10.1016/j.na.2009.01.109. Google Scholar

[21]

D. Motreanu and N. S. Papageorgiou, On some elliptic hemivariational and variational-hemivariational inequalities,, Nonlinear Anal., 62 (2005), 757. doi: 10.1016/j.na.2005.03.101. Google Scholar

[22]

N. S. Papageorgiou and E. M. Rocha, "Existence and Multiplicity of Solutions for the Noncoercive Neumann p-Laplacian,", Preceedings of the 2007 Conference on Variational and Toplogical Methods: Theory, 18 (2010), 57. Google Scholar

[23]

N. S. Papageorgiou and G. Smyrlis, Multiple solutions for nonlinear Neumann problems with the p-Laplacian and a nonsmooth crossing potential,, Nonlinearity, 23 (2010), 529. doi: 10.1088/0951-7715/23/3/005. Google Scholar

[24]

B. Ricceri, On a three critical points theorem,, Arch. Math. (Basel), 75 (2000), 220. Google Scholar

[25]

B. Ricceri, A general variational principle and some of its applications,, J. Comput. Appl. Math., 113 (2000). doi: 10.1016/S0377-0427(99)00269-1. Google Scholar

show all references

References:
[1]

G. Bonanno, Some remarks on a three critical points theorem,, Nonlinear Anal., 54 (2003), 651. doi: 10.1016/S0362-546X(03)00092-0. Google Scholar

[2]

G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities,, J. Differential Equations, 244 (2008), 3031. doi: 10.1016/j.jde.2008.02.025. Google Scholar

[3]

G. Bonanno and A. Chinnì, Discontinuous elliptic problems involving the $p(x)$-Laplacian,, Math. Nachr., 284 (2011), 639. doi: 10.1002/mana.200810232. Google Scholar

[4]

G. Bonanno and A. Chinnì, Multiple solutions for elliptic problems involving the $p(x)$-Laplacian,, Le Matematiche, LXVI (2011), 105. Google Scholar

[5]

G. Bonanno and S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition,, Appl. Anal., 89 (2010), 1. doi: 10.1080/00036810903397438. Google Scholar

[6]

F. Cammaroto, A. Chinnì and B. Di Bella, Multiple solutions for a Neumann problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 71 (2009), 4486. doi: 10.1016/j.na.2009.03.009. Google Scholar

[7]

K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations,, J. Math. Anal. Appl., 80 (1981), 102. doi: 10.1016/0022-247X(81)90095-0. Google Scholar

[8]

F. H. Clarke, "Optimization and Nonsmooth Analysis," Second edition,, Classics Appl. Math., 5 (1990). Google Scholar

[9]

G. Dai, Three solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 70 (2009), 3755. doi: 10.1016/j.na.2008.07.031. Google Scholar

[10]

G. Dai, Infinitely many solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 70 (2009), 2297. doi: 10.1016/j.na.2008.03.009. Google Scholar

[11]

X. Fan and S.-G. Deng, Remarks on Ricceri's variational principle and applications to the $p(x)$-Laplacian equations,, Nonlinear Anal., 67 (2007), 3064. doi: 10.1016/j.na.2006.09.060. Google Scholar

[12]

X. Fan and C. Ji, Existence of infinitely many solutions for a Neumann problem involving the $p(x)$-Laplacian,, J. Math. Anal. Appl., 334 (2007), 248. doi: 10.1016/j.jmaa.2006.12.055. Google Scholar

[13]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl., 263 (2001), 424. doi: 10.1006/jmaa.2000.7617. Google Scholar

[14]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1,p(x)}$,, Czechoslovak Math., 41 (1991), 592. Google Scholar

[15]

A. Kristály, Infinitely many solutions for a differential inclusion problem in $\mathbbR^n$,, J. Differential Equations, 220 (2006), 511. doi: 10.1016/j.jde.2005.02.007. Google Scholar

[16]

A. Kristály, M. Mihǎilescu and V. Rǎdulescu, Two non-trivial solutions for a non-homogeneous Neumann problem: An Orlicz-Sobolev space setting,, Proc. Royal Soc. Edinburgh Sect. A, 139 (2009), 367. doi: 10.1017/S030821050700025X. Google Scholar

[17]

S. A. Marano and D. Motreanu, On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems,, Nonlinear Anal., 48 (2002), 37. doi: 10.1016/S0362-546X(00)00171-1. Google Scholar

[18]

S. A. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian,, J. Differential Equations, 182 (2002), 108. doi: 10.1006/jdeq.2001.4092. Google Scholar

[19]

M. Mihǎilescu, Existence and multiplicity of solutions for a Neumann problem involving the $p(x)$-Laplace operator,, Nonlinear Analysis, 67 (2007), 1419. doi: 10.1016/j.na.2006.07.027. Google Scholar

[20]

D. S. Moschetto, A quasilinear Neumann problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 71 (2009), 2739. doi: 10.1016/j.na.2009.01.109. Google Scholar

[21]

D. Motreanu and N. S. Papageorgiou, On some elliptic hemivariational and variational-hemivariational inequalities,, Nonlinear Anal., 62 (2005), 757. doi: 10.1016/j.na.2005.03.101. Google Scholar

[22]

N. S. Papageorgiou and E. M. Rocha, "Existence and Multiplicity of Solutions for the Noncoercive Neumann p-Laplacian,", Preceedings of the 2007 Conference on Variational and Toplogical Methods: Theory, 18 (2010), 57. Google Scholar

[23]

N. S. Papageorgiou and G. Smyrlis, Multiple solutions for nonlinear Neumann problems with the p-Laplacian and a nonsmooth crossing potential,, Nonlinearity, 23 (2010), 529. doi: 10.1088/0951-7715/23/3/005. Google Scholar

[24]

B. Ricceri, On a three critical points theorem,, Arch. Math. (Basel), 75 (2000), 220. Google Scholar

[25]

B. Ricceri, A general variational principle and some of its applications,, J. Comput. Appl. Math., 113 (2000). doi: 10.1016/S0377-0427(99)00269-1. Google Scholar

[1]

Cristian Bereanu, Petru Jebelean. Multiple critical points for a class of periodic lower semicontinuous functionals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 47-66. doi: 10.3934/dcds.2013.33.47

[2]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[3]

Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231

[4]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[5]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[6]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[7]

M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 215-231. doi: 10.3934/dcds.1999.5.215

[8]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[9]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[10]

P. Candito, S. A. Marano, D. Motreanu. Critical points for a class of nondifferentiable functions and applications. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 175-194. doi: 10.3934/dcds.2005.13.175

[11]

Jaime Arango, Adriana Gómez. Critical points of solutions to elliptic problems in planar domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 327-338. doi: 10.3934/cpaa.2011.10.327

[12]

Marc Briane. Isotropic realizability of electric fields around critical points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 353-372. doi: 10.3934/dcdsb.2014.19.353

[13]

M. L. Miotto. Multiple solutions for elliptic problem in $\mathbb{R}^N$ with critical Sobolev exponent and weight function. Communications on Pure & Applied Analysis, 2010, 9 (1) : 233-248. doi: 10.3934/cpaa.2010.9.233

[14]

Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907

[15]

Yavdat Il'yasov. On critical exponent for an elliptic equation with non-Lipschitz nonlinearity. Conference Publications, 2011, 2011 (Special) : 698-706. doi: 10.3934/proc.2011.2011.698

[16]

Antonio Capella. Solutions of a pure critical exponent problem involving the half-laplacian in annular-shaped domains. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1645-1662. doi: 10.3934/cpaa.2011.10.1645

[17]

Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021

[18]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[19]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[20]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]