June  2012, 5(3): 631-639. doi: 10.3934/dcdss.2012.5.631

Survey on time periodic problem for fluid flow under inhomogeneous boundary condition

1. 

Department of Mathematics, Meiji University, Kawasaki, 214-8571, Japan

Received  September 2010 Revised  October 2010 Published  October 2011

We consider the time dependent motion of incompressible viscous fluid with non-homogeneous boundary condition. We suppose that the bounded domain filled by the fluid has at least two boundary components, and the boundary data for the fluid velocity satisfies only the general outflow condition (GOC). The existence of solutions for the stationary problem and time periodic problem is not known in general context. We present results for the Navier-Stokes equations and the Boussinesq equations.
Citation: Hiroko Morimoto. Survey on time periodic problem for fluid flow under inhomogeneous boundary condition. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 631-639. doi: 10.3934/dcdss.2012.5.631
References:
[1]

C. J. Amick, Existence of solutions to the nonhomogeneous steady Navier-Stokes equations,, Indiana Univ. Math. J., 33 (1984), 817. doi: 10.1512/iumj.1984.33.33043. Google Scholar

[2]

R. Farwig and H. Morimoto, Leray's inequality for fluid flow in symmetric multi-connected doamins,, Darmstadt University of Technology, 2612 (2010). Google Scholar

[3]

H. Fujita, On the existence and regularity of the steady-state solutions of the Navier-Stokes theorem,, J. Fac. Sci. Univ. Tokyo, 9 (1961), 59. Google Scholar

[4]

H. Fujita, On stationary solutions to Navier-Stokes equations in symmetric plane domains under general outflow condition,, in, 388 (1998), 16. Google Scholar

[5]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II, Nonlinear Steady Problems,", Springer Tracts in Natural Philosophy, 39 (1994). Google Scholar

[6]

E. Hopf, Ein allgemeiner Endlichkeitssatz der Hydrodynamik,, Math. Ann., 117 (1941), 764. doi: 10.1007/BF01450040. Google Scholar

[7]

E. Hopf, "On Nonlinear Partial Differential Equations,", Lecture Series of the Symposium on Partial Differential Equations, (1957), 1. Google Scholar

[8]

H. Inoue and M. Ôtani, Periodic Problems for Heat Convection Equations in Noncylindrical Domains,, Funkcialaj Ekvacioj, 40 (1997), 19. Google Scholar

[9]

S. Kaniel and M. Shinbrot, A reproductive property of the Navier-Stokes eqautions,, Arch. Rat. Mech. Anal., 24 (1967), 363. doi: 10.1007/BF00253153. Google Scholar

[10]

T-P. Kobayashi, Time periodic solutions of the Navier-Stokes equations under general outflow condition,, Tokyo Journal of Mathematics, 32 (2009), 409. doi: 10.3836/tjm/1264170239. Google Scholar

[11]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow," Second English edition, revised and enlarged,, Translated from the Russian by Richard A. Silverman and John Chu, (1969). Google Scholar

[12]

J. Leray, Etude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l'hydrodynamique,, J. Math. Pure Appl., 12 (1933), 1. Google Scholar

[13]

J. L. Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,", Dunod, (1969). Google Scholar

[14]

H. Morimoto, On the existence of periodic weak solutions of the Navier-Stokes equations in regions with periodically moving boundaries,, J. Fac. Sci. Univ. Tokyo, 18 (): 499. Google Scholar

[15]

H. Morimoto, Non-stationary Boussinesq equations,, J. Fac. Science Univ. Tokyo Sec. IA, 39 (1992), 61. Google Scholar

[16]

H. Morimoto, General outflow condition for Navier-Stokes flow,, in, 16 (1998), 209. Google Scholar

[17]

H. Morimoto, A remark on the existence of 2-D steady Navier-Stokes flow in symmetric domain under general outflow condition,, J. Math. Fluid Mech., 9 (2007), 411. doi: 10.1007/s00021-005-0206-2. Google Scholar

[18]

H. Morimoto, Time periodic Navier-Stokes flow with nonhomogeneous boundary condition,, Journal of Mathematical Sciences The University of Tokyo, 16 (2009), 113. Google Scholar

[19]

H. Morimoto, Heat convection equation with nonhomogeneous boundary condition,, Funkciaj Ekvacioj, 53 (2010), 213. doi: 10.1619/fesi.53.213. Google Scholar

[20]

K. Ōeda, Weak and strong solutions of the heat convection equations in regions with moving boundaries,, J. Fac. Science, 36 (1989), 491. Google Scholar

[21]

G. Prodi, Qualche risultato riguardo alle equazioni di Navier-Stokes nel caso di bidimensionale,, Rendi Semi. Mat. Univ. Padova, 30 (1960), 1. Google Scholar

[22]

J. Serrin, A note on the existence of periodic solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 3 (1959), 120. doi: 10.1007/BF00284169. Google Scholar

[23]

A. Takeshita, On the reproductive property of 2-dimensional Navier-Stokes equations,, J. Fac. Sci. Univ. Tokyo Sect. I, 16 (1970), 297. Google Scholar

[24]

A. Takeshita, A remark on Leray's inequality,, Pacific J. Math., 157 (1993), 151. Google Scholar

[25]

I. Yudovič, Periodic motions of a viscous incompressible fluid,, Doklady Acad. Nauk., 130 (1960), 1214. Google Scholar

show all references

References:
[1]

C. J. Amick, Existence of solutions to the nonhomogeneous steady Navier-Stokes equations,, Indiana Univ. Math. J., 33 (1984), 817. doi: 10.1512/iumj.1984.33.33043. Google Scholar

[2]

R. Farwig and H. Morimoto, Leray's inequality for fluid flow in symmetric multi-connected doamins,, Darmstadt University of Technology, 2612 (2010). Google Scholar

[3]

H. Fujita, On the existence and regularity of the steady-state solutions of the Navier-Stokes theorem,, J. Fac. Sci. Univ. Tokyo, 9 (1961), 59. Google Scholar

[4]

H. Fujita, On stationary solutions to Navier-Stokes equations in symmetric plane domains under general outflow condition,, in, 388 (1998), 16. Google Scholar

[5]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II, Nonlinear Steady Problems,", Springer Tracts in Natural Philosophy, 39 (1994). Google Scholar

[6]

E. Hopf, Ein allgemeiner Endlichkeitssatz der Hydrodynamik,, Math. Ann., 117 (1941), 764. doi: 10.1007/BF01450040. Google Scholar

[7]

E. Hopf, "On Nonlinear Partial Differential Equations,", Lecture Series of the Symposium on Partial Differential Equations, (1957), 1. Google Scholar

[8]

H. Inoue and M. Ôtani, Periodic Problems for Heat Convection Equations in Noncylindrical Domains,, Funkcialaj Ekvacioj, 40 (1997), 19. Google Scholar

[9]

S. Kaniel and M. Shinbrot, A reproductive property of the Navier-Stokes eqautions,, Arch. Rat. Mech. Anal., 24 (1967), 363. doi: 10.1007/BF00253153. Google Scholar

[10]

T-P. Kobayashi, Time periodic solutions of the Navier-Stokes equations under general outflow condition,, Tokyo Journal of Mathematics, 32 (2009), 409. doi: 10.3836/tjm/1264170239. Google Scholar

[11]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow," Second English edition, revised and enlarged,, Translated from the Russian by Richard A. Silverman and John Chu, (1969). Google Scholar

[12]

J. Leray, Etude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l'hydrodynamique,, J. Math. Pure Appl., 12 (1933), 1. Google Scholar

[13]

J. L. Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,", Dunod, (1969). Google Scholar

[14]

H. Morimoto, On the existence of periodic weak solutions of the Navier-Stokes equations in regions with periodically moving boundaries,, J. Fac. Sci. Univ. Tokyo, 18 (): 499. Google Scholar

[15]

H. Morimoto, Non-stationary Boussinesq equations,, J. Fac. Science Univ. Tokyo Sec. IA, 39 (1992), 61. Google Scholar

[16]

H. Morimoto, General outflow condition for Navier-Stokes flow,, in, 16 (1998), 209. Google Scholar

[17]

H. Morimoto, A remark on the existence of 2-D steady Navier-Stokes flow in symmetric domain under general outflow condition,, J. Math. Fluid Mech., 9 (2007), 411. doi: 10.1007/s00021-005-0206-2. Google Scholar

[18]

H. Morimoto, Time periodic Navier-Stokes flow with nonhomogeneous boundary condition,, Journal of Mathematical Sciences The University of Tokyo, 16 (2009), 113. Google Scholar

[19]

H. Morimoto, Heat convection equation with nonhomogeneous boundary condition,, Funkciaj Ekvacioj, 53 (2010), 213. doi: 10.1619/fesi.53.213. Google Scholar

[20]

K. Ōeda, Weak and strong solutions of the heat convection equations in regions with moving boundaries,, J. Fac. Science, 36 (1989), 491. Google Scholar

[21]

G. Prodi, Qualche risultato riguardo alle equazioni di Navier-Stokes nel caso di bidimensionale,, Rendi Semi. Mat. Univ. Padova, 30 (1960), 1. Google Scholar

[22]

J. Serrin, A note on the existence of periodic solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 3 (1959), 120. doi: 10.1007/BF00284169. Google Scholar

[23]

A. Takeshita, On the reproductive property of 2-dimensional Navier-Stokes equations,, J. Fac. Sci. Univ. Tokyo Sect. I, 16 (1970), 297. Google Scholar

[24]

A. Takeshita, A remark on Leray's inequality,, Pacific J. Math., 157 (1993), 151. Google Scholar

[25]

I. Yudovič, Periodic motions of a viscous incompressible fluid,, Doklady Acad. Nauk., 130 (1960), 1214. Google Scholar

[1]

Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219

[2]

Wojciech M. Zajączkowski. Long time existence of regular solutions to non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1427-1455. doi: 10.3934/dcdss.2013.6.1427

[3]

Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325

[4]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

[5]

Jean-Pierre Raymond. Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1537-1564. doi: 10.3934/dcdsb.2010.14.1537

[6]

Reinhard Farwig, Yasushi Taniuchi. Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1215-1224. doi: 10.3934/dcdss.2013.6.1215

[7]

Giovanni P. Galdi. Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1237-1257. doi: 10.3934/dcdss.2013.6.1237

[8]

Jie Liao, Xiao-Ping Wang. Stability of an efficient Navier-Stokes solver with Navier boundary condition. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 153-171. doi: 10.3934/dcdsb.2012.17.153

[9]

Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861

[10]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[11]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[12]

Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 985-1014. doi: 10.3934/cpaa.2013.12.985

[13]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[14]

Gung-Min Gie, Makram Hamouda, Roger Temam. Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 741-766. doi: 10.3934/nhm.2012.7.741

[15]

Gabriela Planas, Eduardo Hernández. Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1245-1258. doi: 10.3934/dcds.2008.21.1245

[16]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[17]

Shenghao Li, Min Chen, Bing-Yu Zhang. A non-homogeneous boundary value problem of the sixth order Boussinesq equation in a quarter plane. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2505-2525. doi: 10.3934/dcds.2018104

[18]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 611-629. doi: 10.3934/dcds.2016.36.611

[19]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[20]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]