June  2012, 5(3): 605-629. doi: 10.3934/dcdss.2012.5.605

On a p-curl system arising in electromagnetism

1. 

Department of Mathematics/CMAT, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal, Portugal

2. 

CMAF/Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa

Received  September 2010 Revised  June 2011 Published  October 2011

We prove existence of solution of a $p$-curl type evolutionary system arising in electromagnetism with a power nonlinearity of order $p$, $1 < p < \infty$, assuming natural tangential boundary conditions. We consider also the asymptotic behaviour in the power obtaining, when $p$ tends to infinity, a variational inequality with a curl constraint. We also discuss the existence, uniqueness and continuous dependence on the data of the solutions to general variational inequalities with curl constraints dependent on time, as well as the asymptotic stabilization in time towards the stationary solution with and without constraint.
Citation: Fernando Miranda, José-Francisco Rodrigues, Lisa Santos. On a p-curl system arising in electromagnetism. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 605-629. doi: 10.3934/dcdss.2012.5.605
References:
[1]

C. Amrouche and N. Seloula, $L^p$-theory for vector potentials and Sobolev's inequalities for vector fields,, C. R. Math. Acad. Sci. Paris, 349 (2011), 529. Google Scholar

[2]

A. Bermúdez, R. Muñoz-Sola and F. Pena, A nonlinear partial differential system arising in thermoelectricity,, European J. Appl. Math., 16 (2005), 683. Google Scholar

[3]

A. Bossavit, "Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements,'', Electromagnetism, (1998). Google Scholar

[4]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology,'' Vol. 3, With the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C. Amson,, Springer-Verlag, (1990). Google Scholar

[5]

A. Haraux, "Nonlinear Evolution Equations--Global Behavior of Solutions,'' Lecture Notes in Mathematics, 841,, Springer-Verlag, (1981). Google Scholar

[6]

L. Landau and E. Lifshitz, "Electrodynamics of Continuous Media,'', Course of Theoretical Physics, (1960). Google Scholar

[7]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,'', Dunod, (1969). Google Scholar

[8]

F. Miranda, J.-F. Rodrigues and L. Santos, A class of stationary nonlinear Maxwell systems,, Math. Models Methods Appl. Sci., 19 (2009), 1883. doi: 10.1142/S0218202509003966. Google Scholar

[9]

D. Mitrea, M. Mitrea and J. Pipher, Vector potential theory on nonsmooth domains in $R^3$ and applications to electromagnetic scattering,, J. Fourier Anal. Appl., 3 (1997), 131. doi: 10.1007/BF02649132. Google Scholar

[10]

M. Mitrea, Boundary value problems for Dirac operators and Maxwell's equations in non-smooth domains,, Math. Methods Appl. Sci., 25 (2002), 1355. doi: 10.1002/mma.375. Google Scholar

[11]

L. Prigozhin, On the Bean critical-state model in superconductivity,, European J. Appl. Math., 7 (1996), 237. Google Scholar

[12]

L. Santos, A diffusion problem with gradient constraint and evolutive Dirichlet condition,, Port. Math., 48 (1991), 441. Google Scholar

[13]

L. Santos, Variational problems with non-constant gradient constraints,, Port. Math. (N.S.), 59 (2002), 205. Google Scholar

[14]

C. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains,, in, 11 (1992), 1. Google Scholar

[15]

J. Simon, Quelques propriétés de solutions d'équations et d'inéquations d'évolution paraboliques non linéaires,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 585. Google Scholar

[16]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65. Google Scholar

[17]

S. Sobolev, "Applications of Functional Analysis in Mathematical Physics,'', Translations of Mathematical Monographs, (1963). Google Scholar

[18]

W. von Wahl, Estimating $\nabla u$ by div $u$ and curl $u$,, Math. Methods Appl. Sci., 15 (1992), 123. doi: 10.1002/mma.1670150206. Google Scholar

[19]

H.-M. Yin, On a nonlinear Maxwell's system in quasi-stationary electromagnetic fields,, Math. Models Methods Appl. Sci., 14 (2004), 1521. doi: 10.1142/S0218202504003787. Google Scholar

[20]

H.-M. Yin, B. Li, and J. Zou, A degenerate evolution system modeling Bean's critical-state type-II superconductors,, Discrete Contin. Dyn. Syst., 8 (2002), 781. doi: 10.3934/dcds.2002.8.781. Google Scholar

[21]

S. Zheng, "Nonlinear Evolution Equations,'' Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 133,, Chapman & Hall/CRC, (2004). Google Scholar

show all references

References:
[1]

C. Amrouche and N. Seloula, $L^p$-theory for vector potentials and Sobolev's inequalities for vector fields,, C. R. Math. Acad. Sci. Paris, 349 (2011), 529. Google Scholar

[2]

A. Bermúdez, R. Muñoz-Sola and F. Pena, A nonlinear partial differential system arising in thermoelectricity,, European J. Appl. Math., 16 (2005), 683. Google Scholar

[3]

A. Bossavit, "Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements,'', Electromagnetism, (1998). Google Scholar

[4]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology,'' Vol. 3, With the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C. Amson,, Springer-Verlag, (1990). Google Scholar

[5]

A. Haraux, "Nonlinear Evolution Equations--Global Behavior of Solutions,'' Lecture Notes in Mathematics, 841,, Springer-Verlag, (1981). Google Scholar

[6]

L. Landau and E. Lifshitz, "Electrodynamics of Continuous Media,'', Course of Theoretical Physics, (1960). Google Scholar

[7]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,'', Dunod, (1969). Google Scholar

[8]

F. Miranda, J.-F. Rodrigues and L. Santos, A class of stationary nonlinear Maxwell systems,, Math. Models Methods Appl. Sci., 19 (2009), 1883. doi: 10.1142/S0218202509003966. Google Scholar

[9]

D. Mitrea, M. Mitrea and J. Pipher, Vector potential theory on nonsmooth domains in $R^3$ and applications to electromagnetic scattering,, J. Fourier Anal. Appl., 3 (1997), 131. doi: 10.1007/BF02649132. Google Scholar

[10]

M. Mitrea, Boundary value problems for Dirac operators and Maxwell's equations in non-smooth domains,, Math. Methods Appl. Sci., 25 (2002), 1355. doi: 10.1002/mma.375. Google Scholar

[11]

L. Prigozhin, On the Bean critical-state model in superconductivity,, European J. Appl. Math., 7 (1996), 237. Google Scholar

[12]

L. Santos, A diffusion problem with gradient constraint and evolutive Dirichlet condition,, Port. Math., 48 (1991), 441. Google Scholar

[13]

L. Santos, Variational problems with non-constant gradient constraints,, Port. Math. (N.S.), 59 (2002), 205. Google Scholar

[14]

C. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains,, in, 11 (1992), 1. Google Scholar

[15]

J. Simon, Quelques propriétés de solutions d'équations et d'inéquations d'évolution paraboliques non linéaires,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 585. Google Scholar

[16]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65. Google Scholar

[17]

S. Sobolev, "Applications of Functional Analysis in Mathematical Physics,'', Translations of Mathematical Monographs, (1963). Google Scholar

[18]

W. von Wahl, Estimating $\nabla u$ by div $u$ and curl $u$,, Math. Methods Appl. Sci., 15 (1992), 123. doi: 10.1002/mma.1670150206. Google Scholar

[19]

H.-M. Yin, On a nonlinear Maxwell's system in quasi-stationary electromagnetic fields,, Math. Models Methods Appl. Sci., 14 (2004), 1521. doi: 10.1142/S0218202504003787. Google Scholar

[20]

H.-M. Yin, B. Li, and J. Zou, A degenerate evolution system modeling Bean's critical-state type-II superconductors,, Discrete Contin. Dyn. Syst., 8 (2002), 781. doi: 10.3934/dcds.2002.8.781. Google Scholar

[21]

S. Zheng, "Nonlinear Evolution Equations,'' Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 133,, Chapman & Hall/CRC, (2004). Google Scholar

[1]

O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185

[2]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[3]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[4]

Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101

[5]

Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172

[6]

Rong Hu, Ya-Ping Fang, Nan-Jing Huang. Levitin-Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints. Journal of Industrial & Management Optimization, 2010, 6 (3) : 465-481. doi: 10.3934/jimo.2010.6.465

[7]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[8]

Yurii Nesterov, Laura Scrimali. Solving strongly monotone variational and quasi-variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1383-1396. doi: 10.3934/dcds.2011.31.1383

[9]

Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems & Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443

[10]

Gang Qian, Deren Han, Lingling Xu, Hai Yang. Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities. Journal of Industrial & Management Optimization, 2013, 9 (1) : 255-274. doi: 10.3934/jimo.2013.9.255

[11]

Shige Peng, Mingyu Xu. Constrained BSDEs, viscosity solutions of variational inequalities and their applications. Mathematical Control & Related Fields, 2013, 3 (2) : 233-244. doi: 10.3934/mcrf.2013.3.233

[12]

Michel Chipot, Karen Yeressian. On the asymptotic behavior of variational inequalities set in cylinders. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4875-4890. doi: 10.3934/dcds.2013.33.4875

[13]

Qingzhi Yang. The revisit of a projection algorithm with variable steps for variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 211-217. doi: 10.3934/jimo.2005.1.211

[14]

P. Smoczynski, Mohamed Aly Tawhid. Two numerical schemes for general variational inequalities. Journal of Industrial & Management Optimization, 2008, 4 (2) : 393-406. doi: 10.3934/jimo.2008.4.393

[15]

G. Mastroeni, L. Pellegrini. On the image space analysis for vector variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (1) : 123-132. doi: 10.3934/jimo.2005.1.123

[16]

Yusuke Murase, Risei Kano, Nobuyuki Kenmochi. Elliptic Quasi-variational inequalities and applications. Conference Publications, 2009, 2009 (Special) : 583-591. doi: 10.3934/proc.2009.2009.583

[17]

G. Idone, A. Maugeri. Variational inequalities and a transport planning for an elastic and continuum model. Journal of Industrial & Management Optimization, 2005, 1 (1) : 81-86. doi: 10.3934/jimo.2005.1.81

[18]

Barbara Panicucci, Massimo Pappalardo, Mauro Passacantando. On finite-dimensional generalized variational inequalities. Journal of Industrial & Management Optimization, 2006, 2 (1) : 43-53. doi: 10.3934/jimo.2006.2.43

[19]

Dimitri Mugnai. Almost uniqueness result for reversed variational inequalities. Conference Publications, 2007, 2007 (Special) : 751-757. doi: 10.3934/proc.2007.2007.751

[20]

Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

[Back to Top]