June  2012, 5(3): 591-604. doi: 10.3934/dcdss.2012.5.591

Rate-independent processes with linear growth energies and time-dependent boundary conditions

1. 

Institute of Information Theory and Automation of the ASCR, Pod vodárenskou věží 4, CZ-182 08 Praha 8, Czech Republic

2. 

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY

Received  August 2010 Revised  January 2011 Published  October 2011

A rate-independent evolution problem is considered for which the stored energy density depends on the gradient of the displacement. The stored energy density does not have to be quasiconvex and is assumed to exhibit linear growth at infinity; no further assumptions are made on the behaviour at infinity. We analyse an evolutionary process with positively $1$-homogeneous dissipation and time-dependent Dirichlet boundary conditions.
Citation: Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591
References:
[1]

I. V. Chenchiah, M. O. Rieger and J. Zimmer, Gradient flows in asymmetric metric spaces,, Nonlinear Anal., 71 (2009), 5820. doi: 10.1016/j.na.2009.05.006. Google Scholar

[2]

S. Conti and M. Ortiz, Dislocation microstructures and the effective behavior of single crystals,, Arch. Ration. Mech. Anal., 176 (2005), 103. doi: 10.1007/s00205-004-0353-2. Google Scholar

[3]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Ration. Mech. Anal., 176 (2005), 165. doi: 10.1007/s00205-004-0351-4. Google Scholar

[4]

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations,, Comm. Math. Phys., 108 (1987), 667. doi: 10.1007/BF01214424. Google Scholar

[5]

G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies,, J. Reine Angew. Math., 595 (2006), 55. doi: 10.1515/CRELLE.2006.044. Google Scholar

[6]

M. Kružík and T. Roubíček, On the measures of DiPerna and Majda,, Math. Bohem., 122 (1997), 383. Google Scholar

[7]

M. Kružík and J. Zimmer, A model of shape memory alloys accounting for plasticity,, IMA Journal of Applied Mathematics, 76 (2011), 193. doi: 10.1093/imamat/hxq058. Google Scholar

[8]

M. Kružík and J. Zimmer, Vanishing regularisation for gradient flows via $\Gamma$-limit,, in preparation., (). Google Scholar

[9]

M. Kružík and J. Zimmer, Evolutionary problems in non-reflexive spaces,, ESAIM Control Optim. Calc. Var., 16 (2010), 1. Google Scholar

[10]

A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain,, J. Nonlinear Sci., 19 (2009), 221. doi: 10.1007/s00332-008-9033-y. Google Scholar

[11]

A. Mielke and T. Roubíček, A rate-independent model for inelastic behavior of shape-memory alloys,, Multiscale Model. Simul., 1 (2003), 571. doi: 10.1137/S1540345903422860. Google Scholar

[12]

A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle,, Arch. Ration. Mech. Anal., 162 (2002), 137. doi: 10.1007/s002050200194. Google Scholar

[13]

M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals,, J. Mech. Phys. Solids, 47 (1999), 397. doi: 10.1016/S0022-5096(97)00096-3. Google Scholar

[14]

T. Roubíček, "Relaxation in Optimization Theory and Variational Calculus,'', de Gruyter Series in Nonlinear Analysis and Applications, 4 (1997). Google Scholar

[15]

J. Souček, Spaces of functions on domain $\Omega $, whose $k$-th derivatives are measures defined on $\bar \Omega $,, Časopis Pĕst. Mat., 97 (1972), 10. Google Scholar

[16]

D. W. Stroock and S. R. S. Varadhan, "Multidimensional Diffusion Processes,'', Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 233 (1979). Google Scholar

show all references

References:
[1]

I. V. Chenchiah, M. O. Rieger and J. Zimmer, Gradient flows in asymmetric metric spaces,, Nonlinear Anal., 71 (2009), 5820. doi: 10.1016/j.na.2009.05.006. Google Scholar

[2]

S. Conti and M. Ortiz, Dislocation microstructures and the effective behavior of single crystals,, Arch. Ration. Mech. Anal., 176 (2005), 103. doi: 10.1007/s00205-004-0353-2. Google Scholar

[3]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Ration. Mech. Anal., 176 (2005), 165. doi: 10.1007/s00205-004-0351-4. Google Scholar

[4]

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations,, Comm. Math. Phys., 108 (1987), 667. doi: 10.1007/BF01214424. Google Scholar

[5]

G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies,, J. Reine Angew. Math., 595 (2006), 55. doi: 10.1515/CRELLE.2006.044. Google Scholar

[6]

M. Kružík and T. Roubíček, On the measures of DiPerna and Majda,, Math. Bohem., 122 (1997), 383. Google Scholar

[7]

M. Kružík and J. Zimmer, A model of shape memory alloys accounting for plasticity,, IMA Journal of Applied Mathematics, 76 (2011), 193. doi: 10.1093/imamat/hxq058. Google Scholar

[8]

M. Kružík and J. Zimmer, Vanishing regularisation for gradient flows via $\Gamma$-limit,, in preparation., (). Google Scholar

[9]

M. Kružík and J. Zimmer, Evolutionary problems in non-reflexive spaces,, ESAIM Control Optim. Calc. Var., 16 (2010), 1. Google Scholar

[10]

A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain,, J. Nonlinear Sci., 19 (2009), 221. doi: 10.1007/s00332-008-9033-y. Google Scholar

[11]

A. Mielke and T. Roubíček, A rate-independent model for inelastic behavior of shape-memory alloys,, Multiscale Model. Simul., 1 (2003), 571. doi: 10.1137/S1540345903422860. Google Scholar

[12]

A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle,, Arch. Ration. Mech. Anal., 162 (2002), 137. doi: 10.1007/s002050200194. Google Scholar

[13]

M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals,, J. Mech. Phys. Solids, 47 (1999), 397. doi: 10.1016/S0022-5096(97)00096-3. Google Scholar

[14]

T. Roubíček, "Relaxation in Optimization Theory and Variational Calculus,'', de Gruyter Series in Nonlinear Analysis and Applications, 4 (1997). Google Scholar

[15]

J. Souček, Spaces of functions on domain $\Omega $, whose $k$-th derivatives are measures defined on $\bar \Omega $,, Časopis Pĕst. Mat., 97 (1972), 10. Google Scholar

[16]

D. W. Stroock and S. R. S. Varadhan, "Multidimensional Diffusion Processes,'', Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 233 (1979). Google Scholar

[1]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[2]

Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070

[3]

Gianni Dal Maso, Alexander Mielke, Ulisse Stefanelli. Preface: Rate-independent evolutions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : i-ii. doi: 10.3934/dcdss.2013.6.1i

[4]

Nicola Guglielmi, László Hatvani. On small oscillations of mechanical systems with time-dependent kinetic and potential energy. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 911-926. doi: 10.3934/dcds.2008.20.911

[5]

T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215

[6]

Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257

[7]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[8]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations & Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015

[9]

Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649

[10]

Alexander Mielke, Riccarda Rossi, Giuseppe Savaré. Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 585-615. doi: 10.3934/dcds.2009.25.585

[11]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[12]

Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rate-independent evolutions and hysteresis modelling. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : i-i. doi: 10.3934/dcdss.2015.8.4i

[13]

Eduard Marušić-Paloka, Igor Pažanin. Reaction of the fluid flow on time-dependent boundary perturbation. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1227-1246. doi: 10.3934/cpaa.2019059

[14]

Hedy Attouch, Alexandre Cabot, Zaki Chbani, Hassan Riahi. Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient. Evolution Equations & Control Theory, 2018, 7 (3) : 353-371. doi: 10.3934/eect.2018018

[15]

Akio Ito, Noriaki Yamazaki, Nobuyuki Kenmochi. Attractors of nonlinear evolution systems generated by time-dependent subdifferentials in Hilbert spaces. Conference Publications, 1998, 1998 (Special) : 327-349. doi: 10.3934/proc.1998.1998.327

[16]

Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020009

[17]

Luca Minotti. Visco-Energetic solutions to one-dimensional rate-independent problems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5883-5912. doi: 10.3934/dcds.2017256

[18]

Alice Fiaschi. Rate-independent phase transitions in elastic materials: A Young-measure approach. Networks & Heterogeneous Media, 2010, 5 (2) : 257-298. doi: 10.3934/nhm.2010.5.257

[19]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[20]

Riccarda Rossi, Giuseppe Savaré. A characterization of energetic and $BV$ solutions to one-dimensional rate-independent systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 167-191. doi: 10.3934/dcdss.2013.6.167

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]