August  2011, 4(4): 851-864. doi: 10.3934/dcdss.2011.4.851

On a new kind of convexity for solutions of parabolic problems

1. 

Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578

2. 

Dipartimento di Matematica 'U. Dini', Viale Morgagni 67/A, 50137 Firenze, Italy

Received  December 2009 Revised  February 2010 Published  November 2010

We introduce the notion of $\alpha$-parabolic quasi-concavity for functions of space and time, which extends the usual notion of quasi-concavity and the notion of parabolic quasi-cocavity introduced in [18]. Then we investigate the $\alpha$-parabolic quasi-concavity of solutions to parabolic problems with vanishing initial datum. The results here obtained are generalizations of some of the results of [18].
Citation: Kazuhiro Ishige, Paolo Salani. On a new kind of convexity for solutions of parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 851-864. doi: 10.3934/dcdss.2011.4.851
References:
[1]

C. Bianchini, M. Longinetti and P. Salani, Quasiconcave solutions to elliptic problems in convex rings,, Indiana Univ. Math J., 58 (2009), 1565. doi: doi:10.1512/iumj.2009.58.3539. Google Scholar

[2]

C. Borell, Brownian motion in a convex ring and quasiconcavity,, Comm. Math. Phys., 86 (1982), 143. doi: doi:10.1007/BF01205665. Google Scholar

[3]

C. Borell, A note on parabolic convexity and heat conduction,, Ann. Inst. H. Poincar\'e Probab. Statist., 32 (1996), 387. Google Scholar

[4]

H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,, J. Functional Anal., 22 (1976), 366. doi: doi:10.1016/0022-1236(76)90004-5. Google Scholar

[5]

P. Daskalopoulos, R. Hamilton and K. Lee, All time $C^\infty$-Regularity of interface in degenerated diffusion: A geometric approach,, Duke Math. Journal, 108 (2001), 295. doi: doi:10.1215/S0012-7094-01-10824-7. Google Scholar

[6]

P. Daskalopoulos and K.-A. Lee, Convexity and all-time $C^\infty$-regularity of the interface in flame propagation,, Comm. Pure Appl. Math., 55 (2002), 633. doi: doi:10.1002/cpa.10028. Google Scholar

[7]

P. Daskalopoulos and K.-A. Lee, All time smooth solutions of the one-phase Stefan problem and the Hele-Shaw flow,, Comm. in P.D.E., 12 (2004), 71. Google Scholar

[8]

J. I. Diaz and B. Kawohl, On convexity and starshapedness of level sets for some nonlinear elliptic and parabolic problems on convex rings,, Preprint n. 393 (1986), 123 (1986). Google Scholar

[9]

J. I. Diaz and B. Kawohl, On convexity and starshapedness of level sets for some nonlinear elliptic and parabolic problems on convex rings,, J. Math. Anal. Appl., 177 (1993), 263. doi: doi:10.1006/jmaa.1993.1257. Google Scholar

[10]

E. Francini, Starshapedness of level sets for solutions of nonlinear parabolic equations,, Rend. Ist. Mat. Univ. Trieste, 28 (1996), 49. Google Scholar

[11]

Y. Giga, S. Goto, H. Ishii and M.-H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains,, Indiana Univ. Math. J., 40 (1991), 443. doi: doi:10.1512/iumj.1991.40.40023. Google Scholar

[12]

A. Greco, Extremality conditions for the quasi-concavity function and applications,, Arch. Math., 93 (2009), 389. doi: doi:10.1007/s00013-009-0035-2. Google Scholar

[13]

A. Greco and B. Kawohl, Log-concavity in some parabolic problems,, Electron. J. Differential Equations, 1999 (1999), 1. Google Scholar

[14]

P. Guan and Lu Xu, Extremality conditions for the quasi-concavity function and applications,, eprint arXiv:1004.1187v2 (2010), (2010). Google Scholar

[15]

G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities,", Cambridge Univ. Press, (1934). Google Scholar

[16]

K. Ishige and P. Salani, Is quasi-concavity preserved by heat flow?,, Arch. Math., 90 (2008), 455. doi: doi:10.1007/s00013-008-2437-y. Google Scholar

[17]

K. Ishige and P. Salani, Convexity breaking of free boundary in porous medium equation,, Interfaces Free Bound., 12 (2010), 75. doi: doi:10.4171/IFB/227. Google Scholar

[18]

K. Ishige and P. Salani, Parabolic quasi-concavity for solutions to parabolic problems in convex rings,, Math. Nachr., 283 (2010), 1526. doi: doi:10.1002/mana.200910242. Google Scholar

[19]

S. Janson and J. Tysk, Preservation of convexity of solutions to parabolic equations,, J. Differential Equations, 206 (2004), 182. doi: doi:10.1016/j.jde.2004.07.016. Google Scholar

[20]

B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE,", Lecture Notes in Math. \textbf{1150}, 1150 (1985). Google Scholar

[21]

A. U. Kennington, Convexity of level curves for an initial value problem,, J. Math. Anal. Appl., 133 (1988), 324. doi: doi:10.1016/0022-247X(88)90404-0. Google Scholar

[22]

N. J. Korevaar, Convex solutions to nonlinear elliptic and parabolic boundary value problems,, Indiana Univ. Math. J., 32 (1983), 603. doi: doi:10.1512/iumj.1983.32.32042. Google Scholar

[23]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Amer. Math. Soc., (1968). Google Scholar

[24]

K.-A. Lee, Power-concavity on nonlinear parabolic flows,, Comm. Pure Appl. Math., 58 (2005), 1529. doi: doi:10.1002/cpa.20068. Google Scholar

[25]

K.-A. Lee and J. L. Vázquez, Geometrical properties of solutions of the porous medium equation for large times,, Indiana Univ. Math. J., 52 (2003), 991. doi: doi:10.1512/iumj.2003.52.2200. Google Scholar

[26]

P.-L. Lions and M. Musiela, Convexity of solutions of parabolic equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 915. Google Scholar

[27]

M. Longinetti and P. Salani, On the Hessian matrix and Minkowski addition of quasiconcave functions,, J. Math. Pures Appl., 88 (2007), 276. doi: doi:10.1016/j.matpur.2007.06.007. Google Scholar

show all references

References:
[1]

C. Bianchini, M. Longinetti and P. Salani, Quasiconcave solutions to elliptic problems in convex rings,, Indiana Univ. Math J., 58 (2009), 1565. doi: doi:10.1512/iumj.2009.58.3539. Google Scholar

[2]

C. Borell, Brownian motion in a convex ring and quasiconcavity,, Comm. Math. Phys., 86 (1982), 143. doi: doi:10.1007/BF01205665. Google Scholar

[3]

C. Borell, A note on parabolic convexity and heat conduction,, Ann. Inst. H. Poincar\'e Probab. Statist., 32 (1996), 387. Google Scholar

[4]

H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,, J. Functional Anal., 22 (1976), 366. doi: doi:10.1016/0022-1236(76)90004-5. Google Scholar

[5]

P. Daskalopoulos, R. Hamilton and K. Lee, All time $C^\infty$-Regularity of interface in degenerated diffusion: A geometric approach,, Duke Math. Journal, 108 (2001), 295. doi: doi:10.1215/S0012-7094-01-10824-7. Google Scholar

[6]

P. Daskalopoulos and K.-A. Lee, Convexity and all-time $C^\infty$-regularity of the interface in flame propagation,, Comm. Pure Appl. Math., 55 (2002), 633. doi: doi:10.1002/cpa.10028. Google Scholar

[7]

P. Daskalopoulos and K.-A. Lee, All time smooth solutions of the one-phase Stefan problem and the Hele-Shaw flow,, Comm. in P.D.E., 12 (2004), 71. Google Scholar

[8]

J. I. Diaz and B. Kawohl, On convexity and starshapedness of level sets for some nonlinear elliptic and parabolic problems on convex rings,, Preprint n. 393 (1986), 123 (1986). Google Scholar

[9]

J. I. Diaz and B. Kawohl, On convexity and starshapedness of level sets for some nonlinear elliptic and parabolic problems on convex rings,, J. Math. Anal. Appl., 177 (1993), 263. doi: doi:10.1006/jmaa.1993.1257. Google Scholar

[10]

E. Francini, Starshapedness of level sets for solutions of nonlinear parabolic equations,, Rend. Ist. Mat. Univ. Trieste, 28 (1996), 49. Google Scholar

[11]

Y. Giga, S. Goto, H. Ishii and M.-H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains,, Indiana Univ. Math. J., 40 (1991), 443. doi: doi:10.1512/iumj.1991.40.40023. Google Scholar

[12]

A. Greco, Extremality conditions for the quasi-concavity function and applications,, Arch. Math., 93 (2009), 389. doi: doi:10.1007/s00013-009-0035-2. Google Scholar

[13]

A. Greco and B. Kawohl, Log-concavity in some parabolic problems,, Electron. J. Differential Equations, 1999 (1999), 1. Google Scholar

[14]

P. Guan and Lu Xu, Extremality conditions for the quasi-concavity function and applications,, eprint arXiv:1004.1187v2 (2010), (2010). Google Scholar

[15]

G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities,", Cambridge Univ. Press, (1934). Google Scholar

[16]

K. Ishige and P. Salani, Is quasi-concavity preserved by heat flow?,, Arch. Math., 90 (2008), 455. doi: doi:10.1007/s00013-008-2437-y. Google Scholar

[17]

K. Ishige and P. Salani, Convexity breaking of free boundary in porous medium equation,, Interfaces Free Bound., 12 (2010), 75. doi: doi:10.4171/IFB/227. Google Scholar

[18]

K. Ishige and P. Salani, Parabolic quasi-concavity for solutions to parabolic problems in convex rings,, Math. Nachr., 283 (2010), 1526. doi: doi:10.1002/mana.200910242. Google Scholar

[19]

S. Janson and J. Tysk, Preservation of convexity of solutions to parabolic equations,, J. Differential Equations, 206 (2004), 182. doi: doi:10.1016/j.jde.2004.07.016. Google Scholar

[20]

B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE,", Lecture Notes in Math. \textbf{1150}, 1150 (1985). Google Scholar

[21]

A. U. Kennington, Convexity of level curves for an initial value problem,, J. Math. Anal. Appl., 133 (1988), 324. doi: doi:10.1016/0022-247X(88)90404-0. Google Scholar

[22]

N. J. Korevaar, Convex solutions to nonlinear elliptic and parabolic boundary value problems,, Indiana Univ. Math. J., 32 (1983), 603. doi: doi:10.1512/iumj.1983.32.32042. Google Scholar

[23]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Amer. Math. Soc., (1968). Google Scholar

[24]

K.-A. Lee, Power-concavity on nonlinear parabolic flows,, Comm. Pure Appl. Math., 58 (2005), 1529. doi: doi:10.1002/cpa.20068. Google Scholar

[25]

K.-A. Lee and J. L. Vázquez, Geometrical properties of solutions of the porous medium equation for large times,, Indiana Univ. Math. J., 52 (2003), 991. doi: doi:10.1512/iumj.2003.52.2200. Google Scholar

[26]

P.-L. Lions and M. Musiela, Convexity of solutions of parabolic equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 915. Google Scholar

[27]

M. Longinetti and P. Salani, On the Hessian matrix and Minkowski addition of quasiconcave functions,, J. Math. Pures Appl., 88 (2007), 276. doi: doi:10.1016/j.matpur.2007.06.007. Google Scholar

[1]

Kim Dang Phung. Carleman commutator approach in logarithmic convexity for parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 899-933. doi: 10.3934/mcrf.2018040

[2]

Chuanqiang Chen. On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: Spacetime quasiconcave solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4761-4811. doi: 10.3934/dcds.2016007

[3]

Chuanqiang Chen. On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3383-3402. doi: 10.3934/dcds.2014.34.3383

[4]

David L. Finn. Convexity of level curves for solutions to semilinear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1335-1343. doi: 10.3934/cpaa.2008.7.1335

[5]

Qing Liu, Atsushi Nakayasu. Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 157-183. doi: 10.3934/dcds.2019007

[6]

Victor Isakov. On increasing stability of the continuation for elliptic equations of second order without (pseudo)convexity assumptions. Inverse Problems & Imaging, 2019, 13 (5) : 983-1006. doi: 10.3934/ipi.2019044

[7]

Juraj Földes, Peter Poláčik. On asymptotically symmetric parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 673-689. doi: 10.3934/nhm.2012.7.673

[8]

H. Gajewski, I. V. Skrypnik. To the uniqueness problem for nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 315-336. doi: 10.3934/dcds.2004.10.315

[9]

Jan Prüss, Gieri Simonett, Rico Zacher. On normal stability for nonlinear parabolic equations. Conference Publications, 2009, 2009 (Special) : 612-621. doi: 10.3934/proc.2009.2009.612

[10]

Wolfgang Walter. Nonlinear parabolic differential equations and inequalities. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 451-468. doi: 10.3934/dcds.2002.8.451

[11]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[12]

Baojun Bian, Pengfei Guan. A structural condition for microscopic convexity principle. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 789-807. doi: 10.3934/dcds.2010.28.789

[13]

Arrigo Cellina, Carlo Mariconda, Giulia Treu. Comparison results without strict convexity. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 57-65. doi: 10.3934/dcdsb.2009.11.57

[14]

Takesi Fukao, Masahiro Kubo. Nonlinear degenerate parabolic equations for a thermohydraulic model. Conference Publications, 2007, 2007 (Special) : 399-408. doi: 10.3934/proc.2007.2007.399

[15]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[16]

Maria Michaela Porzio. Existence of solutions for some "noncoercive" parabolic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 553-568. doi: 10.3934/dcds.1999.5.553

[17]

A. V. Rezounenko. Inertial manifolds with delay for retarded semilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 829-840. doi: 10.3934/dcds.2000.6.829

[18]

Ryuichi Suzuki. Universal bounds for quasilinear parabolic equations with convection. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 563-586. doi: 10.3934/dcds.2006.16.563

[19]

Lijian Jiang, Yalchin Efendiev, Victor Ginting. Multiscale methods for parabolic equations with continuum spatial scales. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 833-859. doi: 10.3934/dcdsb.2007.8.833

[20]

Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]