June  2011, 4(3): 631-640. doi: 10.3934/dcdss.2011.4.631

Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map

1. 

Wichita State University, 1845 Fairmount, Wichita, KS, 67260-0033

Received  April 2009 Revised  September 2009 Published  November 2010

We derive some bounds which can be viewed as an evidence of increasing stability in the problem of recovery of the potential coefficient in the Schrödinger equation from the Dirichlet-to-Neumann map, when frequency (energy level) is growing. These bounds hold under certain a-priori bounds on the unknown coefficient. Proofs use complex- and real-valued geometrical optics solutions. We outline open problems and possible future developments.
Citation: Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631
References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153. Google Scholar

[2]

G. Alessandrini and M. Di Cristo, Stable determination of an inclusion by boundary measurements,, SIAM J. Math. Anal., 37 (2005), 200. Google Scholar

[3]

D. Arallumallige and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation,, Inverse Problems, 23 (2007), 1689. Google Scholar

[4]

K. Astala and L. Päivärinta, Calderon's inverse conductivity problem in the plane,, Ann. Math., 163 (2006), 265. Google Scholar

[5]

G. Bao, S. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm,, J. Comput. Phys., 227 (2007), 755. Google Scholar

[6]

A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case,, J. Inv. Ill-Posed Probl., 15 (2007), 19. Google Scholar

[7]

I. Bushuyev, Stability of recovery of the near-field wave from the scattering amplitude,, Inverse Problems, 12 (1996), 859. Google Scholar

[8]

A. P. Calderon, On an inverse boundary value problem,, in, (1980), 65. Google Scholar

[9]

D. Colton, H. Haddar and M. Piana, The linear sampling method in inverse electromagnetic scattering theory,, Inverse Problems, 19 (2003). Google Scholar

[10]

L. Faddeev, Increasing solutions of the Schrödinger equation,, Soviet Phys. Dokl., 10 (1966), 1033. Google Scholar

[11]

P. Hähner, A periodic Faddeev-type solution operator,, J. Diff. Equat., 128 (1996), 300. Google Scholar

[12]

L. Hörmander, "Linear Partial Differential Operators,", Springer-Verlag, (1963). Google Scholar

[13]

T. Hrycak and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation,, Inverse Problems, 20 (2004), 697. Google Scholar

[14]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Springer-Verlag, (2006). Google Scholar

[15]

V. Isakov, "Increased Stability in the Continuation for the Helmholtz Equation with Variable Coefficient,", in, 426 (2007), 255. Google Scholar

[16]

V. Isakov and A. Nachman, Global uniqueness for a two-dimensional elliptic inverse problem,, Trans. AMS, 347 (1995), 3375. Google Scholar

[17]

F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound,, Comm. Pure Appl. Math., 13 (1960), 551. Google Scholar

[18]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435. Google Scholar

[19]

A. Nachman, Global Uniqueness for a two dimensional inverse boundary value problem,, Ann. Math., 142 (1996), 71. Google Scholar

[20]

F. Natterer and F. Wübbeling, Marching schemes for inverse acoustic scattering problem,, Numer. Math., 100 (2005), 697. Google Scholar

[21]

R. Novikov, The $\bar{\partial}$-approach to monochromatic inverse scattering in three dimensions,, J. Geom. Anal., 18 (2008), 612. Google Scholar

[22]

V. Palamodov, Stability in diffraction tomography and a nonlinear "basic theorem,", J. d' Anal. Math., 91 (2003), 247. Google Scholar

[23]

J. Sylvester and G. Uhlmann, Global uniqueness theorem for an inverse boundary value problem,, Ann. Math., 125 (1987), 153. Google Scholar

[24]

J. Sylvester and G. Uhlmann, Inverse boundary value problems at the boundary-continuous dependence,, Comm. Pure Appl. Math., 41 (1988), 197. Google Scholar

[25]

M. Taylor, "Partial Differential Equations. II,", Springer-Verlag, (1997). Google Scholar

show all references

References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153. Google Scholar

[2]

G. Alessandrini and M. Di Cristo, Stable determination of an inclusion by boundary measurements,, SIAM J. Math. Anal., 37 (2005), 200. Google Scholar

[3]

D. Arallumallige and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation,, Inverse Problems, 23 (2007), 1689. Google Scholar

[4]

K. Astala and L. Päivärinta, Calderon's inverse conductivity problem in the plane,, Ann. Math., 163 (2006), 265. Google Scholar

[5]

G. Bao, S. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm,, J. Comput. Phys., 227 (2007), 755. Google Scholar

[6]

A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case,, J. Inv. Ill-Posed Probl., 15 (2007), 19. Google Scholar

[7]

I. Bushuyev, Stability of recovery of the near-field wave from the scattering amplitude,, Inverse Problems, 12 (1996), 859. Google Scholar

[8]

A. P. Calderon, On an inverse boundary value problem,, in, (1980), 65. Google Scholar

[9]

D. Colton, H. Haddar and M. Piana, The linear sampling method in inverse electromagnetic scattering theory,, Inverse Problems, 19 (2003). Google Scholar

[10]

L. Faddeev, Increasing solutions of the Schrödinger equation,, Soviet Phys. Dokl., 10 (1966), 1033. Google Scholar

[11]

P. Hähner, A periodic Faddeev-type solution operator,, J. Diff. Equat., 128 (1996), 300. Google Scholar

[12]

L. Hörmander, "Linear Partial Differential Operators,", Springer-Verlag, (1963). Google Scholar

[13]

T. Hrycak and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation,, Inverse Problems, 20 (2004), 697. Google Scholar

[14]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Springer-Verlag, (2006). Google Scholar

[15]

V. Isakov, "Increased Stability in the Continuation for the Helmholtz Equation with Variable Coefficient,", in, 426 (2007), 255. Google Scholar

[16]

V. Isakov and A. Nachman, Global uniqueness for a two-dimensional elliptic inverse problem,, Trans. AMS, 347 (1995), 3375. Google Scholar

[17]

F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound,, Comm. Pure Appl. Math., 13 (1960), 551. Google Scholar

[18]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435. Google Scholar

[19]

A. Nachman, Global Uniqueness for a two dimensional inverse boundary value problem,, Ann. Math., 142 (1996), 71. Google Scholar

[20]

F. Natterer and F. Wübbeling, Marching schemes for inverse acoustic scattering problem,, Numer. Math., 100 (2005), 697. Google Scholar

[21]

R. Novikov, The $\bar{\partial}$-approach to monochromatic inverse scattering in three dimensions,, J. Geom. Anal., 18 (2008), 612. Google Scholar

[22]

V. Palamodov, Stability in diffraction tomography and a nonlinear "basic theorem,", J. d' Anal. Math., 91 (2003), 247. Google Scholar

[23]

J. Sylvester and G. Uhlmann, Global uniqueness theorem for an inverse boundary value problem,, Ann. Math., 125 (1987), 153. Google Scholar

[24]

J. Sylvester and G. Uhlmann, Inverse boundary value problems at the boundary-continuous dependence,, Comm. Pure Appl. Math., 41 (1988), 197. Google Scholar

[25]

M. Taylor, "Partial Differential Equations. II,", Springer-Verlag, (1997). Google Scholar

[1]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[2]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[3]

Gabriel Katz. Causal holography in application to the inverse scattering problems. Inverse Problems & Imaging, 2019, 13 (3) : 597-633. doi: 10.3934/ipi.2019028

[4]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[5]

Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems & Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749

[6]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems & Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

[7]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[8]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems & Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[9]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[10]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[11]

Guangsheng Wei, Hong-Kun Xu. On the missing bound state data of inverse spectral-scattering problems on the half-line. Inverse Problems & Imaging, 2015, 9 (1) : 239-255. doi: 10.3934/ipi.2015.9.239

[12]

Kaitlyn (Voccola) Muller. A reproducing kernel Hilbert space framework for inverse scattering problems within the Born approximation. Inverse Problems & Imaging, 2019, 13 (6) : 1327-1348. doi: 10.3934/ipi.2019058

[13]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[14]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[15]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems & Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[16]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[17]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[18]

Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 281-291. doi: 10.3934/ipi.2018012

[19]

Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems & Imaging, 2007, 1 (4) : 643-660. doi: 10.3934/ipi.2007.1.643

[20]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]