April  2011, 4(2): 467-482. doi: 10.3934/dcdss.2011.4.467

On certain convex compactifications for relaxation in evolution problems

1. 

Mathematical Institute, Charles University, Sokolovská 83, CZ-186 75 Praha 8

Received  March 2009 Revised  July 2009 Published  November 2010

A general-topological construction of limits of inverse systems is applied to convex compactifications and furthermore to special convex compactifications of Lebesgue-space-valued functions parameterized by time. Application to relaxation of quasistatic evolution in phase-change-type problems is outlined.
Citation: Tomáš Roubíček. On certain convex compactifications for relaxation in evolution problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 467-482. doi: 10.3934/dcdss.2011.4.467
References:
[1]

P. Alexandroff, Untersuchungen über gestalt und lage abgeschlossener mengen beliebiger dimension,, Math. Anal., 30 (1929), 101. Google Scholar

[2]

S. Aubri, M. Fago and M. Ortiz, A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials,, Comp. Meth. in Appl. Mech. Engr., 192 (2003), 2823. Google Scholar

[3]

V. Barbu and T. Precupanu, "Convexity and Optimization in Banach Spaces,", D. Reidel Publ., (1986). Google Scholar

[4]

S. Bartels, C. Carstensen, K. Hackl and U. Hoppe, Effective relaxation for microstructure simulations: Algorithms and applications,, Comput. Methods Appl. Mech. Engrg., 193 (2004), 5143. doi: 10.1016/j.cma.2003.12.065. Google Scholar

[5]

S. A. Belov and V. V. Chistyakov, A selection principle or mappings of bounded variation,, J. Math. Anal. Appl., 249 (2000), 351. doi: 10.1006/jmaa.2000.6844. Google Scholar

[6]

F. Cagnetti and R. Toader, Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: A Young measure approach,, SISSA, (). Google Scholar

[7]

C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity,, Proc. Royal Soc. London, 458 (2002), 299. Google Scholar

[8]

V. V. Chistyakov, Mappings of bounded variations,, J. Dyn. Cont. Syst., 3 (1997), 261. doi: 10.1007/BF02465896. Google Scholar

[9]

V. V. Chistyakov and O. E. Galkin, Mappings of bounded $\Phi$-variation with arbitrary function $\Phi$,, J. Dyn. Cont. Syst., 4 (1998), 217. doi: 10.1023/A:1022889902536. Google Scholar

[10]

G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, Time-dependent systems of generalized Young measures,, Netw. Heterog. Media, 2 (2007), 1. Google Scholar

[11]

G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening,, Arch. Rational Mech. Anal., 189 (2007), 469. doi: 10.1007/s00205-008-0117-5. Google Scholar

[12]

G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, Globally stable quasistatic evolution in plasticity with softening,, Netw. Heterog. Media, 3 (2008), 567. Google Scholar

[13]

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations,, Comm. Math. Phys., 108 (1987), 667. doi: 10.1007/BF01214424. Google Scholar

[14]

S. Eilenberg and N. Steenrod, "Foundation of Algebraic Topology,", Princeton, (1952). Google Scholar

[15]

R. Engelking, "General Topology,", PWN, (1977). Google Scholar

[16]

A. Fiaschi, A Young measure approach to a quasistatic evolution for a class of material models with nonconvex elastic energies,, ESAIM: Control, 15 (2009), 245. doi: 10.1051/cocv:2008030. Google Scholar

[17]

A. Fiaschi, A vanishing viscosity approach to a quasistatic evolution problem with nonconvex energy,, Ann. Inst. H. Poincaré, 26 (2009), 1055. Google Scholar

[18]

A. Fiaschi, Rate-independent phase transitions in elastic materials: A Young-measure approach,, (preprint SISSA, (). Google Scholar

[19]

S. Govindjee, A. Mielke and G. J. Hall, Free-energy of mixing for $n$-variant martensitic phase transformations using quasi-convex analysis,, J. Mech. Physics Solids, 50 (2002), 1897. doi: 10.1016/S0022-5096(02)00009-1. Google Scholar

[20]

K. Hackl and D. M. Kochmann, Relaxed potentials and evolution equations for inelastic microstructures,, in, (2008), 27. doi: 10.1007/978-1-4020-9090-5_3. Google Scholar

[21]

B. Halphen and Q. S. Nguyen, Sur les matériaux standards généralisés., J. Mécanique, 14 (1975), 39. Google Scholar

[22]

E. Helly, Über lineare funktionaloperationen,, Sitzungsberichte der Math.-Natur. Klasse der Kaiserlichen Akademie der Wissenschaften, 121 (1912), 265. Google Scholar

[23]

M. Kružík, A. Mielke and T. Roubíček, Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi,, Meccanica, 40 (2005), 389. doi: 10.1007/s11012-005-2106-1. Google Scholar

[24]

M. Kružík and A. Prohl, Recent developments in the modeling, analysis, and numerics of ferromagnetism,, SIAM Rev., 48 (2006), 439. doi: 10.1137/S0036144504446187. Google Scholar

[25]

M. Kružík and J. Zimmer, Evolutionary problems in non-reflexive spaces,, (preprint no. 5/07, (2007). doi: 10.1051/cocv:2008060. Google Scholar

[26]

M. Kružík and J. Zimmer, A model of shape-memory alloys accounting for plasiticity., (preprint no. 20/08, (2008). Google Scholar

[27]

M. Kružík and J. Zimmer, A note on time-dependent DiPerna-Majda measures,, (preprint no. 19/08, (2008). Google Scholar

[28]

S. Lefschetz, On compact spaces,, Math. Anal., 32 (1931), 521. doi: 10.2307/1968249. Google Scholar

[29]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems,, Calc. Var. PDEs, 22 (2005), 73. Google Scholar

[30]

A. Mielke, Deriving new evolution equations for microstructures via relaxation of variational incremental problems,, Comput. Methods Appl. Mech. Engrg., 193 (2004), 5095. doi: 10.1016/j.cma.2004.07.003. Google Scholar

[31]

A. Mielke, Evolution of rate-independent systems,, in, (2005), 461. Google Scholar

[32]

A. Mielke, A mathematical framework for generalized standard materials in the rate-independent case,, in, 28 (2006), 351. Google Scholar

[33]

A. Mielke and T. Roubíček, A rate-independent model for inelastic behavior of shape-memory alloys,, Multiscale Model. Simul., 1 (2003), 571. doi: 10.1137/S1540345903422860. Google Scholar

[34]

A. Mielke and F. Theil, On rate-independent hysteresis models,, Nonlin. Diff. Eq. Appl., 11 (2004), 151. Google Scholar

[35]

A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle,, Archive Rat. Mech. Anal., 162 (2002), 137. doi: 10.1007/s002050200194. Google Scholar

[36]

T. Roubíček, Convex compactifications and special extensions of optimization problems,, Nonlinear Anal., 16 (1991), 1117. doi: 10.1016/0362-546X(91)90199-B. Google Scholar

[37]

T. Roubíček, "Relaxation in Optimization Theory and Variational Calculus,", W. de Gruyter, (1997). Google Scholar

[38]

T. Roubíček, Convex locally compact extensions of Lebesgue spaces and their applications,, in:, (1999), 237. Google Scholar

[39]

T. Roubíček and K.-H. Hoffmann, About the concept of measure-valued solutions to distributed parameter systems,, Math. Methods Appl. Sci., 18 (1995), 671. doi: 10.1002/mma.1670180902. Google Scholar

[40]

T. Roubíček and M. Kružík, Microstructure evolution model in micromagnetics,, Z. angew. Math. Physik, 55 (2004), 159. Google Scholar

[41]

A. Tychonoff, Über die topologische Erweiterung von Räumen,, Math. Annalen, 102 (1930), 544. doi: 10.1007/BF01782364. Google Scholar

show all references

References:
[1]

P. Alexandroff, Untersuchungen über gestalt und lage abgeschlossener mengen beliebiger dimension,, Math. Anal., 30 (1929), 101. Google Scholar

[2]

S. Aubri, M. Fago and M. Ortiz, A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials,, Comp. Meth. in Appl. Mech. Engr., 192 (2003), 2823. Google Scholar

[3]

V. Barbu and T. Precupanu, "Convexity and Optimization in Banach Spaces,", D. Reidel Publ., (1986). Google Scholar

[4]

S. Bartels, C. Carstensen, K. Hackl and U. Hoppe, Effective relaxation for microstructure simulations: Algorithms and applications,, Comput. Methods Appl. Mech. Engrg., 193 (2004), 5143. doi: 10.1016/j.cma.2003.12.065. Google Scholar

[5]

S. A. Belov and V. V. Chistyakov, A selection principle or mappings of bounded variation,, J. Math. Anal. Appl., 249 (2000), 351. doi: 10.1006/jmaa.2000.6844. Google Scholar

[6]

F. Cagnetti and R. Toader, Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: A Young measure approach,, SISSA, (). Google Scholar

[7]

C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity,, Proc. Royal Soc. London, 458 (2002), 299. Google Scholar

[8]

V. V. Chistyakov, Mappings of bounded variations,, J. Dyn. Cont. Syst., 3 (1997), 261. doi: 10.1007/BF02465896. Google Scholar

[9]

V. V. Chistyakov and O. E. Galkin, Mappings of bounded $\Phi$-variation with arbitrary function $\Phi$,, J. Dyn. Cont. Syst., 4 (1998), 217. doi: 10.1023/A:1022889902536. Google Scholar

[10]

G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, Time-dependent systems of generalized Young measures,, Netw. Heterog. Media, 2 (2007), 1. Google Scholar

[11]

G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening,, Arch. Rational Mech. Anal., 189 (2007), 469. doi: 10.1007/s00205-008-0117-5. Google Scholar

[12]

G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, Globally stable quasistatic evolution in plasticity with softening,, Netw. Heterog. Media, 3 (2008), 567. Google Scholar

[13]

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations,, Comm. Math. Phys., 108 (1987), 667. doi: 10.1007/BF01214424. Google Scholar

[14]

S. Eilenberg and N. Steenrod, "Foundation of Algebraic Topology,", Princeton, (1952). Google Scholar

[15]

R. Engelking, "General Topology,", PWN, (1977). Google Scholar

[16]

A. Fiaschi, A Young measure approach to a quasistatic evolution for a class of material models with nonconvex elastic energies,, ESAIM: Control, 15 (2009), 245. doi: 10.1051/cocv:2008030. Google Scholar

[17]

A. Fiaschi, A vanishing viscosity approach to a quasistatic evolution problem with nonconvex energy,, Ann. Inst. H. Poincaré, 26 (2009), 1055. Google Scholar

[18]

A. Fiaschi, Rate-independent phase transitions in elastic materials: A Young-measure approach,, (preprint SISSA, (). Google Scholar

[19]

S. Govindjee, A. Mielke and G. J. Hall, Free-energy of mixing for $n$-variant martensitic phase transformations using quasi-convex analysis,, J. Mech. Physics Solids, 50 (2002), 1897. doi: 10.1016/S0022-5096(02)00009-1. Google Scholar

[20]

K. Hackl and D. M. Kochmann, Relaxed potentials and evolution equations for inelastic microstructures,, in, (2008), 27. doi: 10.1007/978-1-4020-9090-5_3. Google Scholar

[21]

B. Halphen and Q. S. Nguyen, Sur les matériaux standards généralisés., J. Mécanique, 14 (1975), 39. Google Scholar

[22]

E. Helly, Über lineare funktionaloperationen,, Sitzungsberichte der Math.-Natur. Klasse der Kaiserlichen Akademie der Wissenschaften, 121 (1912), 265. Google Scholar

[23]

M. Kružík, A. Mielke and T. Roubíček, Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi,, Meccanica, 40 (2005), 389. doi: 10.1007/s11012-005-2106-1. Google Scholar

[24]

M. Kružík and A. Prohl, Recent developments in the modeling, analysis, and numerics of ferromagnetism,, SIAM Rev., 48 (2006), 439. doi: 10.1137/S0036144504446187. Google Scholar

[25]

M. Kružík and J. Zimmer, Evolutionary problems in non-reflexive spaces,, (preprint no. 5/07, (2007). doi: 10.1051/cocv:2008060. Google Scholar

[26]

M. Kružík and J. Zimmer, A model of shape-memory alloys accounting for plasiticity., (preprint no. 20/08, (2008). Google Scholar

[27]

M. Kružík and J. Zimmer, A note on time-dependent DiPerna-Majda measures,, (preprint no. 19/08, (2008). Google Scholar

[28]

S. Lefschetz, On compact spaces,, Math. Anal., 32 (1931), 521. doi: 10.2307/1968249. Google Scholar

[29]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems,, Calc. Var. PDEs, 22 (2005), 73. Google Scholar

[30]

A. Mielke, Deriving new evolution equations for microstructures via relaxation of variational incremental problems,, Comput. Methods Appl. Mech. Engrg., 193 (2004), 5095. doi: 10.1016/j.cma.2004.07.003. Google Scholar

[31]

A. Mielke, Evolution of rate-independent systems,, in, (2005), 461. Google Scholar

[32]

A. Mielke, A mathematical framework for generalized standard materials in the rate-independent case,, in, 28 (2006), 351. Google Scholar

[33]

A. Mielke and T. Roubíček, A rate-independent model for inelastic behavior of shape-memory alloys,, Multiscale Model. Simul., 1 (2003), 571. doi: 10.1137/S1540345903422860. Google Scholar

[34]

A. Mielke and F. Theil, On rate-independent hysteresis models,, Nonlin. Diff. Eq. Appl., 11 (2004), 151. Google Scholar

[35]

A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle,, Archive Rat. Mech. Anal., 162 (2002), 137. doi: 10.1007/s002050200194. Google Scholar

[36]

T. Roubíček, Convex compactifications and special extensions of optimization problems,, Nonlinear Anal., 16 (1991), 1117. doi: 10.1016/0362-546X(91)90199-B. Google Scholar

[37]

T. Roubíček, "Relaxation in Optimization Theory and Variational Calculus,", W. de Gruyter, (1997). Google Scholar

[38]

T. Roubíček, Convex locally compact extensions of Lebesgue spaces and their applications,, in:, (1999), 237. Google Scholar

[39]

T. Roubíček and K.-H. Hoffmann, About the concept of measure-valued solutions to distributed parameter systems,, Math. Methods Appl. Sci., 18 (1995), 671. doi: 10.1002/mma.1670180902. Google Scholar

[40]

T. Roubíček and M. Kružík, Microstructure evolution model in micromagnetics,, Z. angew. Math. Physik, 55 (2004), 159. Google Scholar

[41]

A. Tychonoff, Über die topologische Erweiterung von Räumen,, Math. Annalen, 102 (1930), 544. doi: 10.1007/BF01782364. Google Scholar

[1]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks & Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1

[2]

Stefano Luzzatto, Marks Ruziboev. Young towers for product systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1465-1491. doi: 10.3934/dcds.2016.36.1465

[3]

Steffen Arnrich. Modelling phase transitions via Young measures. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 29-48. doi: 10.3934/dcdss.2012.5.29

[4]

Tobias Wichtrey. Harmonic limits of dynamical systems. Conference Publications, 2011, 2011 (Special) : 1432-1439. doi: 10.3934/proc.2011.2011.1432

[5]

Miaohua Jiang. Derivative formula of the potential function for generalized SRB measures of hyperbolic systems of codimension one. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 967-983. doi: 10.3934/dcds.2015.35.967

[6]

Zeya Mi. SRB measures for some diffeomorphisms with dominated splittings as zero noise limits. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6441-6465. doi: 10.3934/dcds.2019279

[7]

Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246

[8]

Chris Good, Robin Knight, Brian Raines. Countable inverse limits of postcritical $w$-limit sets of unimodal maps. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1059-1078. doi: 10.3934/dcds.2010.27.1059

[9]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

[10]

Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233

[11]

Sergei Ivanov. On Helly's theorem in geodesic spaces. Electronic Research Announcements, 2014, 21: 109-112. doi: 10.3934/era.2014.21.109

[12]

Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems & Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003

[13]

Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043

[14]

Huahui Li, Zhiqiang Shao. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2373-2400. doi: 10.3934/cpaa.2016041

[15]

Alexis De Vos, Yvan Van Rentergem. Young subgroups for reversible computers. Advances in Mathematics of Communications, 2008, 2 (2) : 183-200. doi: 10.3934/amc.2008.2.183

[16]

George Ballinger, Xinzhi Liu. Boundedness criteria in terms of two measures for impulsive systems. Conference Publications, 1998, 1998 (Special) : 79-88. doi: 10.3934/proc.1998.1998.79

[17]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

[18]

Victor Magron, Marcelo Forets, Didier Henrion. Semidefinite approximations of invariant measures for polynomial systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6745-6770. doi: 10.3934/dcdsb.2019165

[19]

Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17

[20]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems & Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]