# American Institute of Mathematical Sciences

April  2011, 4(2): 239-246. doi: 10.3934/dcdss.2011.4.239

## The position of the joint of shape memory alloy and bias springs

 1 Department of Mathematics, Faculty of Education, Gifu University, Yanagido 1-1, Gifu, 501-1193

Received  January 2009 Revised  June 2009 Published  November 2010

In our previous work we proposed the mathematical model for a device made of the standard spring and the shape memory alloy spring. The model was given by the system of partial differential equations with the dynamic boundary condition. Also, we have proved the existence and the uniquess theorems for the model. The purpose of this paper is to improve the existence theorem.
Citation: Toyohiko Aiki. The position of the joint of shape memory alloy and bias springs. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 239-246. doi: 10.3934/dcdss.2011.4.239
##### References:
 [1] T. Aiki, Multi-dimensional Stefan problems with dynamic boundary conditions, Applicable Analysis,, Applicable Analysis, 56 (1995), 71. doi: 10.1080/00036819508840311. Google Scholar [2] T. Aiki, Multi-dimensional two-phase Stefan problems with nonlinear dynamic boundary conditions,, in, 7 (1996), 1. Google Scholar [3] T. Aiki, A mathematical model for a valve made of a spring of a shape memory alloy,, in, 29 (2008), 1. Google Scholar [4] K. T. Andrews, K. L. Kuttler and M. Shillor, Second order evolution equations with dynamic boundary conditions,, J. Math. Anal. Appl., 197 (1996), 781. doi: 10.1006/jmaa.1996.0053. Google Scholar [5] M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci., 121 (1996). Google Scholar [6] R. E. Langer, A problem in diffusion or in the flow of heat for a solid in contact with fluid,, Tôhoku Math. J. Ser. 1, 35 (1932), 260. Google Scholar [7] J. L. Lions, "Quelques Methods de Resolutions des Problems aux Limites Non Lineares,", Dunod, 1969 (). Google Scholar [8] N. Sato and T. Aiki, Phase field equations with constraints under nonlinear dynamic boundary conditions,, Commun. Appl. Anal., 5 (2001), 215. Google Scholar

show all references

##### References:
 [1] T. Aiki, Multi-dimensional Stefan problems with dynamic boundary conditions, Applicable Analysis,, Applicable Analysis, 56 (1995), 71. doi: 10.1080/00036819508840311. Google Scholar [2] T. Aiki, Multi-dimensional two-phase Stefan problems with nonlinear dynamic boundary conditions,, in, 7 (1996), 1. Google Scholar [3] T. Aiki, A mathematical model for a valve made of a spring of a shape memory alloy,, in, 29 (2008), 1. Google Scholar [4] K. T. Andrews, K. L. Kuttler and M. Shillor, Second order evolution equations with dynamic boundary conditions,, J. Math. Anal. Appl., 197 (1996), 781. doi: 10.1006/jmaa.1996.0053. Google Scholar [5] M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci., 121 (1996). Google Scholar [6] R. E. Langer, A problem in diffusion or in the flow of heat for a solid in contact with fluid,, Tôhoku Math. J. Ser. 1, 35 (1932), 260. Google Scholar [7] J. L. Lions, "Quelques Methods de Resolutions des Problems aux Limites Non Lineares,", Dunod, 1969 (). Google Scholar [8] N. Sato and T. Aiki, Phase field equations with constraints under nonlinear dynamic boundary conditions,, Commun. Appl. Anal., 5 (2001), 215. Google Scholar
 [1] Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10 [2] Alessia Berti, Claudio Giorgi, Elena Vuk. Free energies and pseudo-elastic transitions for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 293-316. doi: 10.3934/dcdss.2013.6.293 [3] Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1 [4] Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357 [5] Michel Frémond, Elisabetta Rocca. A model for shape memory alloys with the possibility of voids. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1633-1659. doi: 10.3934/dcds.2010.27.1633 [6] Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253 [7] Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837 [8] Diego Grandi, Ulisse Stefanelli. The Souza-Auricchio model for shape-memory alloys. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 723-747. doi: 10.3934/dcdss.2015.8.723 [9] Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. Thermal control of the Souza-Auricchio model for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 369-386. doi: 10.3934/dcdss.2013.6.369 [10] Linxiang Wang, Roderick Melnik. Dynamics of shape memory alloys patches with mechanically induced transformations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1237-1252. doi: 10.3934/dcds.2006.15.1237 [11] Shuji Yoshikawa, Irena Pawłow, Wojciech M. Zajączkowski. A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1093-1115. doi: 10.3934/cpaa.2009.8.1093 [12] Tomáš Roubíček. Modelling of thermodynamics of martensitic transformation in shape-memory alloys. Conference Publications, 2007, 2007 (Special) : 892-902. doi: 10.3934/proc.2007.2007.892 [13] Ferdinando Auricchio, Elena Bonetti. A new "flexible" 3D macroscopic model for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 277-291. doi: 10.3934/dcdss.2013.6.277 [14] Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431 [15] Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147 [16] Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179 [17] R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497 [18] Samia Challal, Abdeslem Lyaghfouri. The heterogeneous dam problem with leaky boundary condition. Communications on Pure & Applied Analysis, 2011, 10 (1) : 93-125. doi: 10.3934/cpaa.2011.10.93 [19] Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 [20] Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

2018 Impact Factor: 0.545