February  2011, 4(1): 223-237. doi: 10.3934/dcdss.2011.4.223

Best design for a fastest cells selecting process

1. 

IRMAR, ENS Cachan Bretagne, CNRS, UEB, av Robert Schuman F-35170 Bruz, France, France

Received  May 2009 Revised  September 2009 Published  October 2010

We consider a cell sorting process based on negative dielectrophoresis. The goal is to optimize the shape of an electrode network to speed up the positioning. We first show that the best electric field to impose has to be radial in order to minimize the average time for a group of particles. We can get an explicit formula in the specific case of a uniform distribution of initial positions, through the resolution of the Abel integral equation. Next,we use a least-square numerical procedure to design the electrode's shape.
Citation: Michel Pierre, Grégory Vial. Best design for a fastest cells selecting process. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 223-237. doi: 10.3934/dcdss.2011.4.223
References:
[1]

A. V. Bitsadze, Integral equations of first kind,, in, 7 (1995). Google Scholar

[2]

T. Carleman, Über die Abelsche Integralgleichung mit konstanten Integrationsgrenzen,, Math. Z., 15 (1922), 111. Google Scholar

[3]

G. I. Eskin, Boundary value problems for elliptic pseudodifferential equations,, Translated from Russian by S. Smith, 52 (1981). Google Scholar

[4]

M. Frénéa, S. P. Faure, B. L. Pioufle, P. Coquet and H. Fujita, Positioning living cells on a high-density electrode array by negative dielectrophoresis,, Materials Science and Engineering: C, 23 (2003), 597. Google Scholar

[5]

Y. Huang and R. Pethig, Electrode design for negative dielectrophoresis,, Measurement Science and Technology, 2 (1991), 1142. Google Scholar

[6]

T. Jones, "Electromechanics of Particles,", Cambridge University Press, (1995). doi: doi:10.1017/CBO9780511574498. Google Scholar

[7]

H. Morgan, M. P. Hughes and N. G. Green, Separation of submicron bioparticles by dielectrophoresis,, Biophysical journal, 77 (1999), 516. Google Scholar

[8]

H. A. Pohl, The motion and precipitation of suspensoids in divergent electric fields,, Journal of Applied Physics, 22 (1951), 869. Google Scholar

[9]

H. A. Pohl, "Dielectrophoresis,", Cambridge University Press, (1978). Google Scholar

[10]

A. D. Polyanin and A. V. Manzhirov, "Handbook of Integral Equations," 2nd edition, Chapman & Hall/CRC, (2008). Google Scholar

show all references

References:
[1]

A. V. Bitsadze, Integral equations of first kind,, in, 7 (1995). Google Scholar

[2]

T. Carleman, Über die Abelsche Integralgleichung mit konstanten Integrationsgrenzen,, Math. Z., 15 (1922), 111. Google Scholar

[3]

G. I. Eskin, Boundary value problems for elliptic pseudodifferential equations,, Translated from Russian by S. Smith, 52 (1981). Google Scholar

[4]

M. Frénéa, S. P. Faure, B. L. Pioufle, P. Coquet and H. Fujita, Positioning living cells on a high-density electrode array by negative dielectrophoresis,, Materials Science and Engineering: C, 23 (2003), 597. Google Scholar

[5]

Y. Huang and R. Pethig, Electrode design for negative dielectrophoresis,, Measurement Science and Technology, 2 (1991), 1142. Google Scholar

[6]

T. Jones, "Electromechanics of Particles,", Cambridge University Press, (1995). doi: doi:10.1017/CBO9780511574498. Google Scholar

[7]

H. Morgan, M. P. Hughes and N. G. Green, Separation of submicron bioparticles by dielectrophoresis,, Biophysical journal, 77 (1999), 516. Google Scholar

[8]

H. A. Pohl, The motion and precipitation of suspensoids in divergent electric fields,, Journal of Applied Physics, 22 (1951), 869. Google Scholar

[9]

H. A. Pohl, "Dielectrophoresis,", Cambridge University Press, (1978). Google Scholar

[10]

A. D. Polyanin and A. V. Manzhirov, "Handbook of Integral Equations," 2nd edition, Chapman & Hall/CRC, (2008). Google Scholar

[1]

Magdi S. Mahmoud, Omar Al-Buraiki. Robust control design of autonomous bicycle kinematics. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 181-191. doi: 10.3934/naco.2014.4.181

[2]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[3]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[4]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[5]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

[6]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[7]

Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095

[8]

Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936-944. doi: 10.3934/proc.2015.0936

[9]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[10]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[11]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[12]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[13]

Michael Herty, Veronika Sachers. Adjoint calculus for optimization of gas networks. Networks & Heterogeneous Media, 2007, 2 (4) : 733-750. doi: 10.3934/nhm.2007.2.733

[14]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[15]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[16]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[17]

Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems & Imaging, 2012, 6 (1) : 25-38. doi: 10.3934/ipi.2012.6.25

[18]

André Nachbin, Roberto Ribeiro-Junior. A boundary integral formulation for particle trajectories in Stokes waves. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3135-3153. doi: 10.3934/dcds.2014.34.3135

[19]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[20]

Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]