February  2011, 4(1): 169-191. doi: 10.3934/dcdss.2011.4.169

Optimal Hölder regularity for nonautonomous Kolmogorov equations

1. 

Dipartimento di Matematica, Università degli Studi di Parma, Viale Parco Area delle Scienze 53/A, I-43124 Parma, Italy

Received  February 2009 Revised  October 2009 Published  October 2010

We consider a class of nonautonomous elliptic operators A with unbounded coefficients defined in $[0,T]\times\R^N$ and we prove optimal Schauder estimates for the solution to the parabolic Cauchy problem $D_tu=$A$u+g$, $u(0,\cdot)=f$.
Citation: Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169
References:
[1]

M. Bertoldi and L. Lorenzi, Estimates of the derivatives for parabolic operators with unbounded coefficients,, Trans. Amer. Math. Soc., 357 (2005), 2627. doi: doi:10.1090/S0002-9947-05-03781-5. Google Scholar

[2]

M. Bertoldi and L. Lorenzi, "Analytical Methods for Markov Semigroups,", Chapman and Hall/CRC Press, (2007). Google Scholar

[3]

S. Cerrai, Elliptic and parabolic equations in $\R^n$ with coefficients having polynomial growth,, Comm. Partial Differential Equations, 21 (1996), 281. doi: doi:10.1080/03605309608821185. Google Scholar

[4]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall Inc., (1964). Google Scholar

[5]

M. Kunze, L. Lorenzi and A. Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients,, Trans. Amer. Math. Soc., 362 (2010), 169. doi: doi:10.1090/S0002-9947-09-04738-2. Google Scholar

[6]

N. V. Krylov and E. Priola, Elliptic and parabolic second-order PDEs with growing coefficients,, preprint, (). Google Scholar

[7]

S. N. Kružkov, A. Castro and M. Lopes, Schauder type estimates and theorems on the existence of the solutions of fundamental problems for linear and nonlinear parabolic equations,, Dokl. Akad. Nauk. SSSR, 220 (1975), 277. Google Scholar

[8]

S. N. Kružkov, A. Castro and M. Lopes, Mayoraciones de Schauder y teorema de existencia de las soluciones del problema de Cauchy para ecuaciones parabolicas lineales y no lineales I,, Cienc. Mat. (Havana), 1 (1980), 55. Google Scholar

[9]

S. N. Kružkov, A. Castro and M. Lopes, Mayoraciones de Schauder y teorema de existencia de las soluciones del problema de Cauchy para ecuaciones parabolicas lineales y no lineales II,, Cienc. Mat. (Havana), 3 (1982), 37. Google Scholar

[10]

L. Lorenzi, Optimal Schauder estimates for parabolic problems with data measurable with respect to time,, SIAM J. Math. Anal., 32 (2000), 588. doi: doi:10.1137/S0036141098342842. Google Scholar

[11]

L. Lorenzi, On a class of elliptic operators with unbounded time and space dependent coefficients in $\mathbb R^N$,, in, (2007). Google Scholar

[12]

A. Lunardi, An interpolation method to characterize domains of generators of semigroups,, Semigroup Forum, 53 (1996), 321. doi: doi:10.1007/BF02574147. Google Scholar

[13]

A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $\R^n$,, Studia Mathematica, 128 (1998), 171. Google Scholar

[14]

A. I. Nazarov and N. N. Ural'tseva, Convex-monotone hulls and an estimate of the maximum of the solution of a parabolic equation,, J. Soviet Math., 37 (1987), 851. doi: doi:10.1007/BF01387723. Google Scholar

[15]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland, (1978). Google Scholar

show all references

References:
[1]

M. Bertoldi and L. Lorenzi, Estimates of the derivatives for parabolic operators with unbounded coefficients,, Trans. Amer. Math. Soc., 357 (2005), 2627. doi: doi:10.1090/S0002-9947-05-03781-5. Google Scholar

[2]

M. Bertoldi and L. Lorenzi, "Analytical Methods for Markov Semigroups,", Chapman and Hall/CRC Press, (2007). Google Scholar

[3]

S. Cerrai, Elliptic and parabolic equations in $\R^n$ with coefficients having polynomial growth,, Comm. Partial Differential Equations, 21 (1996), 281. doi: doi:10.1080/03605309608821185. Google Scholar

[4]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall Inc., (1964). Google Scholar

[5]

M. Kunze, L. Lorenzi and A. Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients,, Trans. Amer. Math. Soc., 362 (2010), 169. doi: doi:10.1090/S0002-9947-09-04738-2. Google Scholar

[6]

N. V. Krylov and E. Priola, Elliptic and parabolic second-order PDEs with growing coefficients,, preprint, (). Google Scholar

[7]

S. N. Kružkov, A. Castro and M. Lopes, Schauder type estimates and theorems on the existence of the solutions of fundamental problems for linear and nonlinear parabolic equations,, Dokl. Akad. Nauk. SSSR, 220 (1975), 277. Google Scholar

[8]

S. N. Kružkov, A. Castro and M. Lopes, Mayoraciones de Schauder y teorema de existencia de las soluciones del problema de Cauchy para ecuaciones parabolicas lineales y no lineales I,, Cienc. Mat. (Havana), 1 (1980), 55. Google Scholar

[9]

S. N. Kružkov, A. Castro and M. Lopes, Mayoraciones de Schauder y teorema de existencia de las soluciones del problema de Cauchy para ecuaciones parabolicas lineales y no lineales II,, Cienc. Mat. (Havana), 3 (1982), 37. Google Scholar

[10]

L. Lorenzi, Optimal Schauder estimates for parabolic problems with data measurable with respect to time,, SIAM J. Math. Anal., 32 (2000), 588. doi: doi:10.1137/S0036141098342842. Google Scholar

[11]

L. Lorenzi, On a class of elliptic operators with unbounded time and space dependent coefficients in $\mathbb R^N$,, in, (2007). Google Scholar

[12]

A. Lunardi, An interpolation method to characterize domains of generators of semigroups,, Semigroup Forum, 53 (1996), 321. doi: doi:10.1007/BF02574147. Google Scholar

[13]

A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $\R^n$,, Studia Mathematica, 128 (1998), 171. Google Scholar

[14]

A. I. Nazarov and N. N. Ural'tseva, Convex-monotone hulls and an estimate of the maximum of the solution of a parabolic equation,, J. Soviet Math., 37 (1987), 851. doi: doi:10.1007/BF01387723. Google Scholar

[15]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland, (1978). Google Scholar

[1]

Giorgio Metafune, Chiara Spina. Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2285-2299. doi: 10.3934/dcds.2012.32.2285

[2]

N. V. Krylov. Some $L_{p}$-estimates for elliptic and parabolic operators with measurable coefficients. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2073-2090. doi: 10.3934/dcdsb.2012.17.2073

[3]

Giorgio Metafune, Chiara Spina, Cristian Tacelli. On a class of elliptic operators with unbounded diffusion coefficients. Evolution Equations & Control Theory, 2014, 3 (4) : 671-680. doi: 10.3934/eect.2014.3.671

[4]

Feng Zhou, Zhenqiu Zhang. Pointwise gradient estimates for subquadratic elliptic systems with discontinuous coefficients. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3137-3160. doi: 10.3934/cpaa.2019141

[5]

Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105

[6]

Gabriella Zecca. An optimal control problem for some nonlinear elliptic equations with unbounded coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1393-1409. doi: 10.3934/dcdsb.2019021

[7]

Luigi Greco, Gioconda Moscariello, Teresa Radice. Nondivergence elliptic equations with unbounded coefficients. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 131-143. doi: 10.3934/dcdsb.2009.11.131

[8]

Bálint Farkas, Luca Lorenzi. On a class of hypoelliptic operators with unbounded coefficients in $R^N$. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1159-1201. doi: 10.3934/cpaa.2009.8.1159

[9]

Simona Fornaro, Federica Gregorio, Abdelaziz Rhandi. Elliptic operators with unbounded diffusion coefficients perturbed by inverse square potentials in $L^p$--spaces. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2357-2372. doi: 10.3934/cpaa.2016040

[10]

Simona Fornaro, Luca Lorenzi. Generation results for elliptic operators with unbounded diffusion coefficients in $L^p$- and $C_b$-spaces. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 747-772. doi: 10.3934/dcds.2007.18.747

[11]

Gary M. Lieberman. Schauder estimates for singular parabolic and elliptic equations of Keldysh type. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1525-1566. doi: 10.3934/dcdsb.2016010

[12]

Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781

[13]

Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 177-189. doi: 10.3934/dcdss.2014.7.177

[14]

Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure & Applied Analysis, 2006, 5 (1) : 213-240. doi: 10.3934/cpaa.2006.5.213

[15]

Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1347-1363. doi: 10.3934/dcds.2011.31.1347

[16]

Patrick W. Dondl, Michael Scheutzow. Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks & Heterogeneous Media, 2012, 7 (1) : 137-150. doi: 10.3934/nhm.2012.7.137

[17]

Horst Heck, Matthias Hieber, Kyriakos Stavrakidis. $L^\infty$-estimates for parabolic systems with VMO-coefficients. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 299-309. doi: 10.3934/dcdss.2010.3.299

[18]

Junjie Zhang, Shenzhou Zheng. Weighted lorentz estimates for nondivergence linear elliptic equations with partially BMO coefficients. Communications on Pure & Applied Analysis, 2017, 16 (3) : 899-914. doi: 10.3934/cpaa.2017043

[19]

Sallah Eddine Boutiah, Abdelaziz Rhandi, Cristian Tacelli. Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 803-817. doi: 10.3934/dcds.2019033

[20]

Ugur G. Abdulla, Evan Cosgrove, Jonathan Goldfarb. On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations & Control Theory, 2017, 6 (3) : 319-344. doi: 10.3934/eect.2017017

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]