December  2011, 4(6): 1611-1619. doi: 10.3934/dcdss.2011.4.1611

On fuzzy filters of Heyting-algebras

1. 

Department of Mathematics, Northwest University, Xi'an 710069, China

2. 

Department of Mathematics, Northwest University, Xi'an, 710069, China

Received  March 2009 Revised  November 2009 Published  December 2010

The concept of fuzzy filter of Heyting-algebras was introduced and some important properties were discussed. Some special kinds of fuzzy filters were defined and we prove that fuzzy Boolean filter is equivelent to fuzzy implicative filter in Heyting-algebras. And the relation among the fuzzy filters were proposed.
Citation: Wei Wang, Xiao-Long Xin. On fuzzy filters of Heyting-algebras. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1611-1619. doi: 10.3934/dcdss.2011.4.1611
References:
[1]

A. Micali and F. Zitan, On homogeneous weighted algebras,, Communications in Algebra, 35 (2007), 2371. doi: 10.1080/00927870701325801. Google Scholar

[2]

E. Turunen, "Mathematics Behind Fuzzy Logic,", Physica-Verlag, (1999). Google Scholar

[3]

K. Iséki and S. Tanaka, Ideal theory of BCK-algebras,, Math. Japon., 21 (1976), 351. Google Scholar

[4]

C. S. Hoo and S. Sessa, Implicative and Boolean ideals of MV-algebras,, Math. Japon., 39 (1994), 215. Google Scholar

[5]

J. D. Bashford and P. D.Jarvis, The genetic code as a peridic table: algebraic aspects,, BioSystems, 57 (2000), 147. doi: 10.1016/S0303-2647(00)00097-6. Google Scholar

[6]

E. Turunen, Boolean deductive systems of BL-algebras,, Arch. Math. Logic, 40 (2001), 467. doi: 10.1007/s001530100088. Google Scholar

[7]

M. K. Kinyon and A. A. Sagle, Quadratic dynamical systems and algebras,, J. Differential Equations, 117 (1995), 67. doi: 10.1006/jdeq.1995.1049. Google Scholar

[8]

L. Frappat, A. Sciarrino and P.Sorba, Crystalizing the genetic code,, J. Biological Physics, 27 (2001), 1. doi: 10.1023/A:1011874407742. Google Scholar

[9]

J. J. Tian and B. L. Li, Coalgebraic structure of genetics inheritance,, Mathematical Biosciences and Engineering, 1 (2004), 243. Google Scholar

[10]

L. Z. Liu and K. T. Li, Fuzzy Boolean and positive implicative filters of BL-algebras,, Fuzzy Sets and Systems, 152 (2005), 333. doi: 10.1016/j.fss.2004.10.005. Google Scholar

[11]

R. Sánchez, R. Grau and E. Morgado, A novel Lie algebra of the genetic code over the Galois field of four DNA bases,, Mathematical Biosciences, 202 (2006), 156. doi: 10.1016/j.mbs.2006.03.017. Google Scholar

[12]

L. Z. Liu and K. T. Li, Fuzzy filters of BL-algebras,, Information Sciences, 173 (2005), 141. doi: 10.1016/j.ins.2004.07.009. Google Scholar

[13]

J. J. Tian, "Evolution Algebras and their Applications,", Springer-Verlag, (2008). doi: 10.1007/978-3-540-74284-5. Google Scholar

[14]

O. Xi, Fuzzy $BCK$-algebras,, Math. Japon., 36 (1991), 935. Google Scholar

[15]

Xiao-Hong Zhang, Young Bae Jun and Myung Im Doh, On fuzzy filters and fuzzy ideals of BL-algebras,, Information Sciences, 20 (2006), 8. Google Scholar

[16]

C. S. Hoo, Fuzzy implicative and Boolean ideals of MV-algebras,, Fuzzy Sets and Systems, 66 (1994), 315. doi: 10.1016/0165-0114(94)90099-X. Google Scholar

[17]

Y. Xu and K. Y. Qin, On filters of lattice implication algebras,, J. Fuzzy Math., 1 (1993), 251. Google Scholar

[18]

Y. Xu and K. Y. Qin, Fuzzy lattice implication algebras,, J. Southwest Jiaotong Univ., 2 (1995), 121. Google Scholar

[19]

Y. B. Jun, Fuzzy positive implicative and fuzzy associative filters of lattice implication algebras,, Fuzzy Sets and Systems, 121 (2001), 353. doi: 10.1016/S0165-0114(00)00030-0. Google Scholar

[20]

Y. B. Jun and S. Z. Song, On fuzzy implicative filters of lattice implication algebras,, J. Fuzzy Math., 10 (2002), 893. Google Scholar

[21]

L. A. Zadeh, Fuzzy sets,, Information and Control, 8 (1965), 338. doi: 10.1016/S0019-9958(65)90241-X. Google Scholar

show all references

References:
[1]

A. Micali and F. Zitan, On homogeneous weighted algebras,, Communications in Algebra, 35 (2007), 2371. doi: 10.1080/00927870701325801. Google Scholar

[2]

E. Turunen, "Mathematics Behind Fuzzy Logic,", Physica-Verlag, (1999). Google Scholar

[3]

K. Iséki and S. Tanaka, Ideal theory of BCK-algebras,, Math. Japon., 21 (1976), 351. Google Scholar

[4]

C. S. Hoo and S. Sessa, Implicative and Boolean ideals of MV-algebras,, Math. Japon., 39 (1994), 215. Google Scholar

[5]

J. D. Bashford and P. D.Jarvis, The genetic code as a peridic table: algebraic aspects,, BioSystems, 57 (2000), 147. doi: 10.1016/S0303-2647(00)00097-6. Google Scholar

[6]

E. Turunen, Boolean deductive systems of BL-algebras,, Arch. Math. Logic, 40 (2001), 467. doi: 10.1007/s001530100088. Google Scholar

[7]

M. K. Kinyon and A. A. Sagle, Quadratic dynamical systems and algebras,, J. Differential Equations, 117 (1995), 67. doi: 10.1006/jdeq.1995.1049. Google Scholar

[8]

L. Frappat, A. Sciarrino and P.Sorba, Crystalizing the genetic code,, J. Biological Physics, 27 (2001), 1. doi: 10.1023/A:1011874407742. Google Scholar

[9]

J. J. Tian and B. L. Li, Coalgebraic structure of genetics inheritance,, Mathematical Biosciences and Engineering, 1 (2004), 243. Google Scholar

[10]

L. Z. Liu and K. T. Li, Fuzzy Boolean and positive implicative filters of BL-algebras,, Fuzzy Sets and Systems, 152 (2005), 333. doi: 10.1016/j.fss.2004.10.005. Google Scholar

[11]

R. Sánchez, R. Grau and E. Morgado, A novel Lie algebra of the genetic code over the Galois field of four DNA bases,, Mathematical Biosciences, 202 (2006), 156. doi: 10.1016/j.mbs.2006.03.017. Google Scholar

[12]

L. Z. Liu and K. T. Li, Fuzzy filters of BL-algebras,, Information Sciences, 173 (2005), 141. doi: 10.1016/j.ins.2004.07.009. Google Scholar

[13]

J. J. Tian, "Evolution Algebras and their Applications,", Springer-Verlag, (2008). doi: 10.1007/978-3-540-74284-5. Google Scholar

[14]

O. Xi, Fuzzy $BCK$-algebras,, Math. Japon., 36 (1991), 935. Google Scholar

[15]

Xiao-Hong Zhang, Young Bae Jun and Myung Im Doh, On fuzzy filters and fuzzy ideals of BL-algebras,, Information Sciences, 20 (2006), 8. Google Scholar

[16]

C. S. Hoo, Fuzzy implicative and Boolean ideals of MV-algebras,, Fuzzy Sets and Systems, 66 (1994), 315. doi: 10.1016/0165-0114(94)90099-X. Google Scholar

[17]

Y. Xu and K. Y. Qin, On filters of lattice implication algebras,, J. Fuzzy Math., 1 (1993), 251. Google Scholar

[18]

Y. Xu and K. Y. Qin, Fuzzy lattice implication algebras,, J. Southwest Jiaotong Univ., 2 (1995), 121. Google Scholar

[19]

Y. B. Jun, Fuzzy positive implicative and fuzzy associative filters of lattice implication algebras,, Fuzzy Sets and Systems, 121 (2001), 353. doi: 10.1016/S0165-0114(00)00030-0. Google Scholar

[20]

Y. B. Jun and S. Z. Song, On fuzzy implicative filters of lattice implication algebras,, J. Fuzzy Math., 10 (2002), 893. Google Scholar

[21]

L. A. Zadeh, Fuzzy sets,, Information and Control, 8 (1965), 338. doi: 10.1016/S0019-9958(65)90241-X. Google Scholar

[1]

Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial & Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581

[2]

Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082

[3]

Juan J. Nieto, M. Victoria Otero-Espinar, Rosana Rodríguez-López. Dynamics of the fuzzy logistic family. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 699-717. doi: 10.3934/dcdsb.2010.14.699

[4]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[5]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[6]

Erik Kropat, Gerhard Wilhelm Weber. Fuzzy target-environment networks and fuzzy-regression approaches. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 135-155. doi: 10.3934/naco.2018008

[7]

Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117

[8]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

[9]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[10]

Guojun Gan, Qiujun Lan, Shiyang Sima. Scalable clustering by truncated fuzzy $c$-means. Big Data & Information Analytics, 2016, 1 (2&3) : 247-259. doi: 10.3934/bdia.2016007

[11]

Gang Chen, Zaiming Liu, Jingchuan Zhang. Analysis of strategic customer behavior in fuzzy queueing systems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018157

[12]

Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-10. doi: 10.3934/jimo.2018158

[13]

Jian Luo, Xueqi Yang, Ye Tian, Wenwen Yu. Corporate and personal credit scoring via fuzzy non-kernel SVM with fuzzy within-class scatter. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019078

[14]

Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457

[15]

Pawan Lingras, Farhana Haider, Matt Triff. Fuzzy temporal meta-clustering of financial trading volatility patterns. Big Data & Information Analytics, 2017, 2 (5) : 1-20. doi: 10.3934/bdia.2017018

[16]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[17]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[18]

Aliki D. Muradova, Georgios K. Tairidis, Georgios E. Stavroulakis. Adaptive Neuro-Fuzzy vibration control of a smart plate. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 251-271. doi: 10.3934/naco.2017017

[19]

Jian Luo, Shu-Cherng Fang, Yanqin Bai, Zhibin Deng. Fuzzy quadratic surface support vector machine based on fisher discriminant analysis. Journal of Industrial & Management Optimization, 2016, 12 (1) : 357-373. doi: 10.3934/jimo.2016.12.357

[20]

Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial & Management Optimization, 2017, 13 (1) : 237-249. doi: 10.3934/jimo.2016014

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]