December  2011, 4(6): 1371-1386. doi: 10.3934/dcdss.2011.4.1371

Train algebras of degree 2 and exponent 3

1. 

Université Polytechnique de Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso 01

2. 

Université de Koudougou, BP 376 Koudougou

3. 

Université de Ouagadougou, 03 BP 7021 Ouagadougou

4. 

Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex

Received  February 2009 Revised  October 2009 Published  December 2010

In this paper we investigate the structure of weighted algebras satisfying the equation $(x^3)^2 = \omega(x)^3x^3$, a class of algebras properly containing the class of Bernstein algebras. We give the classification of these algebras in dimension three. Some results about the structure of algebras satisfying the more general equation $(x^n)^2 = \omega(x)^nx^n$, for $n\geq 2$, are also obtained.
Citation: Joseph Bayara, André Conseibo, Moussa Ouattara, Artibano Micali. Train algebras of degree 2 and exponent 3. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1371-1386. doi: 10.3934/dcdss.2011.4.1371
References:
[1]

A. A. Albert, A theory of power-associative commutative algebras,, Trans. Amer. Math. Soc., 69 (1950), 503. Google Scholar

[2]

I. Basso, R. Costa, J. Carlos Gutiérrez and H. Guzzo Jr., Cubic algebras of exponent $2$: Basic properties,, Int. J. Math. Game Theory and Algebra, 9 (1999), 245. Google Scholar

[3]

J. Bayara, A. Conseibo and M. Ouattara et F. Zitan, Power-associative algebras that are train algebras,, J. Algebra, 324 (2010), 1159. doi: 10.1016/j.jalgebra.2010.06.012. Google Scholar

[4]

H. Guzzo Jr. and P. Vicente, Train algebras of rank $n$ which are Bernstein or power-associative algebras,, Nova J. Math. Game Theory Algebra, 6 (1997), 103. Google Scholar

[5]

H. Guzzo Jr., The Peirce decomposition for commutative train algebras,, Comm. Algebra, 22 (1994), 5745. doi: 10.1080/00927879408825160. Google Scholar

[6]

J. Lopez Sanchez and E. Rodriguez S. Maria, On train algebras of rank $4$,, Comm. Algebra, 24 (1996), 4439. doi: 10.1080/00927879608825825. Google Scholar

[7]

A. Micali and M. Ouattara, Structure des algèbres de Bernstein,, Linear Algebra Appl., 218 (1995), 77. doi: 10.1016/0024-3795(93)00159-W. Google Scholar

[8]

M. Ouattara, Sur les T-algèbres de Jordan,, Linear Algebra Appl., 144 (1991), 11. doi: 10.1016/0024-3795(91)90056-3. Google Scholar

[9]

M. Ouattara, Sur une classe d'algèbres à puissances associatives,, Linear Algebra Appl., 235 (1996), 47. doi: 10.1016/0024-3795(94)00113-8. Google Scholar

[10]

R. D. Schafer, "An Introduction to Nonassociative Algebras,", Academic Press, (1966). Google Scholar

[11]

S. Walcher, On Bernstein algebras which are train algebras,, Proc. Edinb. Math. Soc. (2), 35 (1992), 159. doi: 10.1017/S0013091500005411. Google Scholar

[12]

S. Walcher, Algebras which satisfy a train equation for the first three plenary powers,, Arch. Math. (Basel), 56 (1991), 547. Google Scholar

[13]

A. Wörz-Busekros, "Algebras in Genetics,", Lecture Notes in Biomathematics, 36 (1980). Google Scholar

show all references

References:
[1]

A. A. Albert, A theory of power-associative commutative algebras,, Trans. Amer. Math. Soc., 69 (1950), 503. Google Scholar

[2]

I. Basso, R. Costa, J. Carlos Gutiérrez and H. Guzzo Jr., Cubic algebras of exponent $2$: Basic properties,, Int. J. Math. Game Theory and Algebra, 9 (1999), 245. Google Scholar

[3]

J. Bayara, A. Conseibo and M. Ouattara et F. Zitan, Power-associative algebras that are train algebras,, J. Algebra, 324 (2010), 1159. doi: 10.1016/j.jalgebra.2010.06.012. Google Scholar

[4]

H. Guzzo Jr. and P. Vicente, Train algebras of rank $n$ which are Bernstein or power-associative algebras,, Nova J. Math. Game Theory Algebra, 6 (1997), 103. Google Scholar

[5]

H. Guzzo Jr., The Peirce decomposition for commutative train algebras,, Comm. Algebra, 22 (1994), 5745. doi: 10.1080/00927879408825160. Google Scholar

[6]

J. Lopez Sanchez and E. Rodriguez S. Maria, On train algebras of rank $4$,, Comm. Algebra, 24 (1996), 4439. doi: 10.1080/00927879608825825. Google Scholar

[7]

A. Micali and M. Ouattara, Structure des algèbres de Bernstein,, Linear Algebra Appl., 218 (1995), 77. doi: 10.1016/0024-3795(93)00159-W. Google Scholar

[8]

M. Ouattara, Sur les T-algèbres de Jordan,, Linear Algebra Appl., 144 (1991), 11. doi: 10.1016/0024-3795(91)90056-3. Google Scholar

[9]

M. Ouattara, Sur une classe d'algèbres à puissances associatives,, Linear Algebra Appl., 235 (1996), 47. doi: 10.1016/0024-3795(94)00113-8. Google Scholar

[10]

R. D. Schafer, "An Introduction to Nonassociative Algebras,", Academic Press, (1966). Google Scholar

[11]

S. Walcher, On Bernstein algebras which are train algebras,, Proc. Edinb. Math. Soc. (2), 35 (1992), 159. doi: 10.1017/S0013091500005411. Google Scholar

[12]

S. Walcher, Algebras which satisfy a train equation for the first three plenary powers,, Arch. Math. (Basel), 56 (1991), 547. Google Scholar

[13]

A. Wörz-Busekros, "Algebras in Genetics,", Lecture Notes in Biomathematics, 36 (1980). Google Scholar

[1]

A. S. Dzhumadil'daev. Jordan elements and Left-Center of a Free Leibniz algebra. Electronic Research Announcements, 2011, 18: 31-49. doi: 10.3934/era.2011.18.31

[2]

Joseph Bayara, André Conseibo, Artibano Micali, Moussa Ouattara. Derivations in power-associative algebras. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1359-1370. doi: 10.3934/dcdss.2011.4.1359

[3]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-15. doi: 10.3934/dcdss.2020066

[4]

Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523

[5]

Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420

[6]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[7]

Viktor Levandovskyy, Gerhard Pfister, Valery G. Romanovski. Evaluating cyclicity of cubic systems with algorithms of computational algebra. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2023-2035. doi: 10.3934/cpaa.2012.11.2023

[8]

Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399

[9]

José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Convolutional codes with a matrix-algebra word-ambient. Advances in Mathematics of Communications, 2016, 10 (1) : 29-43. doi: 10.3934/amc.2016.10.29

[10]

H. Bercovici, V. Niţică. Cohomology of higher rank abelian Anosov actions for Banach algebra valued cocycles. Conference Publications, 2001, 2001 (Special) : 50-55. doi: 10.3934/proc.2001.2001.50

[11]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[12]

Navin Keswani. Homotopy invariance of relative eta-invariants and $C^*$-algebra $K$-theory. Electronic Research Announcements, 1998, 4: 18-26.

[13]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[14]

Jun Xie, Jinlong Yuan, Dongxia Wang, Weili Liu, Chongyang Liu. Uniqueness of solutions to fuzzy relational equations regarding Max-av composition and strong regularity of the matrices in Max-av algebra. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1007-1022. doi: 10.3934/jimo.2017087

[15]

Thiago Ferraiol, Mauro Patrão, Lucas Seco. Jordan decomposition and dynamics on flag manifolds. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 923-947. doi: 10.3934/dcds.2010.26.923

[16]

Manuel V. C. Vieira. Derivatives of eigenvalues and Jordan frames. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 115-126. doi: 10.3934/naco.2016003

[17]

A. Cibotarica, Jiu Ding, J. Kolibal, Noah H. Rhee. Solutions of the Yang-Baxter matrix equation for an idempotent. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 347-352. doi: 10.3934/naco.2013.3.347

[18]

Michelle Nourigat, Richard Varro. Conjectures for the existence of an idempotent in $\omega $-polynomial algebras. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1543-1551. doi: 10.3934/dcdss.2011.4.1543

[19]

Diogo A. Gomes, Gabriele Terrone. Bernstein estimates: weakly coupled systems and integral equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 861-883. doi: 10.3934/cpaa.2012.11.861

[20]

Jianhong Wu, Ruyuan Zhang. A simple delayed neural network with large capacity for associative memory. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 851-863. doi: 10.3934/dcdsb.2004.4.851

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

[Back to Top]