February  2011, 4(1): 125-154. doi: 10.3934/dcdss.2011.4.125

A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation

1. 

CMI, Université de Provence, 39 rue Frédéric Joliot-Curie 13453 Marseille cedex 13, France

2. 

CNRS and Laboratoire de Mathématiques, Université de Paris-Sud 11, F-91405 Orsay Cedex, France

3. 

Institute for Advanced Study of Mathematical Sciences, Meiji University, 1-1 Higashi Mita, Tama-ku, Kawasaki, 214-8571, Japan

Received  March 2009 Revised  December 2009 Published  October 2010

Motivated by the motion of an alcohol droplet, we derive a simplified phenomenological free boundary model which consists of an area preserving mean curvature flow coupled with a bulk equation. Our aim is to introduce a nonlocal reaction-diffusion system with a small parameter $\e$ which converges to the original model as $\e$ tends to zero. This approximation enables us to overcome the technical difficulty of the free boundary problem arising in the original model.
Citation: Marie Henry, Danielle Hilhorst, Masayasu Mimura. A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 125-154. doi: 10.3934/dcdss.2011.4.125
References:
[1]

N. D. Alikakos, P. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model,, Arch. Rational Mech. Anal, 128 (1994), 165. doi: doi:10.1007/BF00375025. Google Scholar

[2]

L. Bronsard and B. Stoth, Volume preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation,, SIAM J. Math. Anal., 28 (1997), 769. doi: doi:10.1137/S0036141094279279. Google Scholar

[3]

X. Chen, Spectrums for the Allen-Cahn, Cahn-Hilliard and phase field equations for generic interface,, Comm. P.D.E., 19 (1994), 1371. doi: doi:10.1080/03605309408821057. Google Scholar

[4]

X. Chen and G. Caginalp, Convergence of the phase field model to its sharp interface limits,, European J. Appl. Math., 9 (1998), 417. doi: doi:10.1017/S0956792598003520. Google Scholar

[5]

X.-F. Chen, S.-I. Ei and M. Mimura, Self-motion of camphor discs model and analysis,, to appear in Networks and Heterogeneous Media 4, 1 (2009), 1. Google Scholar

[6]

X. Chen, D. Hilhorst and E. Logak, Mass conserved Allen-Cahn equation and volume preserving mean curvature flow,, to appear, (2010). Google Scholar

[7]

C. M. Elliott and H. Garcke, Existence results for diffusive surface motion laws,, Adv. Math. Sci. Appl., 7 (1997), 467. Google Scholar

[8]

J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres,, Proc. Amer. Math. Soc., 126 (1998), 2789. doi: doi:10.1090/S0002-9939-98-04727-3. Google Scholar

[9]

Y. Hayashima, M. Nagayama and S. Nakata, A camphor grain oscillates while breaking symmetry,, in J. Phys. Chem. B, 105 (2001), 5353. doi: doi:10.1021/jp004505n. Google Scholar

[10]

G. Huisken, The volume preserving mean curvature flow,, J. Reine Angew. Math., 382 (1987), 35. doi: doi:10.1515/crll.1987.382.35. Google Scholar

[11]

O. A. Ladyhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", American Mathematical Society, (1967). Google Scholar

[12]

K. Nagai, Spontaneous irregular motion of an alcohol droplet,, RIMS Kokyuroku B, 3 (2007), 139. Google Scholar

[13]

K. Nagai, Y. Sumino, H. Kitahata and K. Yoshikawa, Model selection in the spontaneous motion of an alcohol droplet,, Phys. Rev. E., 71 (2005). doi: doi:10.1103/PhysRevE.71.065301. Google Scholar

[14]

K. Nagai, H. Sumino, H. Kitahata and K. Yoshikawa, Change in the mode of spontaneous motion of an alcohol droplet caused by a temperature change,, Prog. Theor. Phys., 161 (2006), 286. doi: doi:10.1143/PTPS.161.286. Google Scholar

[15]

J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation,, IMA J. of Appl. Math., 48 (1992), 249. doi: doi:10.1093/imamat/48.3.249. Google Scholar

show all references

References:
[1]

N. D. Alikakos, P. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model,, Arch. Rational Mech. Anal, 128 (1994), 165. doi: doi:10.1007/BF00375025. Google Scholar

[2]

L. Bronsard and B. Stoth, Volume preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation,, SIAM J. Math. Anal., 28 (1997), 769. doi: doi:10.1137/S0036141094279279. Google Scholar

[3]

X. Chen, Spectrums for the Allen-Cahn, Cahn-Hilliard and phase field equations for generic interface,, Comm. P.D.E., 19 (1994), 1371. doi: doi:10.1080/03605309408821057. Google Scholar

[4]

X. Chen and G. Caginalp, Convergence of the phase field model to its sharp interface limits,, European J. Appl. Math., 9 (1998), 417. doi: doi:10.1017/S0956792598003520. Google Scholar

[5]

X.-F. Chen, S.-I. Ei and M. Mimura, Self-motion of camphor discs model and analysis,, to appear in Networks and Heterogeneous Media 4, 1 (2009), 1. Google Scholar

[6]

X. Chen, D. Hilhorst and E. Logak, Mass conserved Allen-Cahn equation and volume preserving mean curvature flow,, to appear, (2010). Google Scholar

[7]

C. M. Elliott and H. Garcke, Existence results for diffusive surface motion laws,, Adv. Math. Sci. Appl., 7 (1997), 467. Google Scholar

[8]

J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres,, Proc. Amer. Math. Soc., 126 (1998), 2789. doi: doi:10.1090/S0002-9939-98-04727-3. Google Scholar

[9]

Y. Hayashima, M. Nagayama and S. Nakata, A camphor grain oscillates while breaking symmetry,, in J. Phys. Chem. B, 105 (2001), 5353. doi: doi:10.1021/jp004505n. Google Scholar

[10]

G. Huisken, The volume preserving mean curvature flow,, J. Reine Angew. Math., 382 (1987), 35. doi: doi:10.1515/crll.1987.382.35. Google Scholar

[11]

O. A. Ladyhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", American Mathematical Society, (1967). Google Scholar

[12]

K. Nagai, Spontaneous irregular motion of an alcohol droplet,, RIMS Kokyuroku B, 3 (2007), 139. Google Scholar

[13]

K. Nagai, Y. Sumino, H. Kitahata and K. Yoshikawa, Model selection in the spontaneous motion of an alcohol droplet,, Phys. Rev. E., 71 (2005). doi: doi:10.1103/PhysRevE.71.065301. Google Scholar

[14]

K. Nagai, H. Sumino, H. Kitahata and K. Yoshikawa, Change in the mode of spontaneous motion of an alcohol droplet caused by a temperature change,, Prog. Theor. Phys., 161 (2006), 286. doi: doi:10.1143/PTPS.161.286. Google Scholar

[15]

J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation,, IMA J. of Appl. Math., 48 (1992), 249. doi: doi:10.1093/imamat/48.3.249. Google Scholar

[1]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[2]

Sigurd Angenent. Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 1-8. doi: 10.3934/nhm.2013.8.1

[3]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[4]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[5]

Shin-Ichiro Ei, Kota Ikeda, Masaharu Nagayama, Akiyasu Tomoeda. Reduced model from a reaction-diffusion system of collective motion of camphor boats. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 847-856. doi: 10.3934/dcdss.2015.8.847

[6]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[7]

Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115

[8]

Danielle Hilhorst, Hideki Murakawa. Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks & Heterogeneous Media, 2014, 9 (4) : 669-682. doi: 10.3934/nhm.2014.9.669

[9]

Sebastién Gaucel, Michel Langlais. Some remarks on a singular reaction-diffusion system arising in predator-prey modeling. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 61-72. doi: 10.3934/dcdsb.2007.8.61

[10]

Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101

[11]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

[12]

Sebastian Aniţa, William Edward Fitzgibbon, Michel Langlais. Global existence and internal stabilization for a reaction-diffusion system posed on non coincident spatial domains. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 805-822. doi: 10.3934/dcdsb.2009.11.805

[13]

Ricardo Enguiça, Andrea Gavioli, Luís Sanchez. A class of singular first order differential equations with applications in reaction-diffusion. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 173-191. doi: 10.3934/dcds.2013.33.173

[14]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[15]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[16]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[17]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[18]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[19]

Yuncheng You. Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1415-1445. doi: 10.3934/cpaa.2011.10.1415

[20]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]