# American Institute of Mathematical Sciences

June  2009, 2(2): 221-238. doi: 10.3934/dcdss.2009.2.221

## Measured topological orbit and Kakutani equivalence

 1 Department of Mathematics, University of Toronto, Toronto, Ontario, Canada 2 Department of Mathematics, Colorado State University, Fort Collins, CO 80523, United States 3 Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904

Received  February 2008 Revised  October 2008 Published  April 2009

Suppose $X$ and $Y$ are Polish spaces each endowed with Borel probability measures $\mu$ and $\nu$. We call these Polish probability spaces. We say a map $\phi$ is a nearly continuous if there are measurable subsets $X_0\subseteq X$ and $Y_0\subseteq Y$, each of full measure, and $\phi:X_0\to Y_0$ is measure-preserving and continuous in the relative topologies on these subsets. We show that this is a natural context to study morphisms between ergodic homeomorphisms of Polish probability spaces. In previous work such maps have been called almost continuous or finitary. We propose the name measured topological dynamics for this area of study. Suppose one has measure-preserving and ergodic maps $T$ and $S$ acting on $X$ and $Y$ respectively. Suppose $\phi$ is a measure-preserving bijection defined between subsets of full measure on these two spaces. Our main result is that such a $\phi$ can always be regularized in the following sense. Both $T$ and $S$ have full groups ($FG(T)$ and $FG(S)$) consisting of those measurable bijections that carry a point to a point on the same orbit. We will show that there exists $f\in FG(T)$ and $h\in FG(S)$ so that $h\phi f$ is nearly continuous. This comes close to giving an alternate proof of the result of del Junco and Şahin, that any two measure-preserving ergodic homeomorphisms of nonatomic Polish probability spaces are continuously orbit equivalent on invariant $G_\delta$ subsets of full measure. One says $T$ and $S$ are evenly Kakutani equivalent if one has an orbit equivalence $\phi$ which restricted to some subset is a conjugacy of the induced maps. Our main result implies that any such measurable Kakutani equivalence can be regularized to a Kakutani equivalence that is nearly continuous. We describe a natural nearly continuous analogue of Kakutani equivalence and prove it strictly stronger than Kakutani equivalence. To do this we introduce a concept of nearly unique ergodicity.
Citation: Andres del Junco, Daniel J. Rudolph, Benjamin Weiss. Measured topological orbit and Kakutani equivalence. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 221-238. doi: 10.3934/dcdss.2009.2.221
 [1] Mrinal Kanti Roychowdhury, Daniel J. Rudolph. Nearly continuous Kakutani equivalence of adding machines. Journal of Modern Dynamics, 2009, 3 (1) : 103-119. doi: 10.3934/jmd.2009.3.103 [2] Luis Barreira, Liviu Horia Popescu, Claudia Valls. Generalized exponential behavior and topological equivalence. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3023-3042. doi: 10.3934/dcdsb.2017161 [3] Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Topological equivalence of some variational problems involving distances. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 247-258. doi: 10.3934/dcds.2001.7.247 [4] Keonhee Lee, Kazuhiro Sakai. Various shadowing properties and their equivalence. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 533-540. doi: 10.3934/dcds.2005.13.533 [5] Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 69-81. doi: 10.3934/amc.2010.4.69 [6] Michael C. Sullivan. Invariants of twist-wise flow equivalence. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 475-484. doi: 10.3934/dcds.1998.4.475 [7] Nguyen Lam. Equivalence of sharp Trudinger-Moser-Adams Inequalities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 973-998. doi: 10.3934/cpaa.2017047 [8] Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543 [9] Mike Crampin, David Saunders. Homogeneity and projective equivalence of differential equation fields. Journal of Geometric Mechanics, 2012, 4 (1) : 27-47. doi: 10.3934/jgm.2012.4.27 [10] Michael C. Sullivan. Invariants of twist-wise flow equivalence. Electronic Research Announcements, 1997, 3: 126-130. [11] Kurt Ehlers. Geometric equivalence on nonholonomic three-manifolds. Conference Publications, 2003, 2003 (Special) : 246-255. doi: 10.3934/proc.2003.2003.246 [12] B. Kaymakcalan, R. Mert, A. Zafer. Asymptotic equivalence of dynamic systems on time scales. Conference Publications, 2007, 2007 (Special) : 558-567. doi: 10.3934/proc.2007.2007.558 [13] Brett M. Werner. An example of Kakutani equivalent and strong orbit equivalent substitution systems that are not conjugate. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 239-249. doi: 10.3934/dcdss.2009.2.239 [14] Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure & Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703 [15] J. Gwinner. On differential variational inequalities and projected dynamical systems - equivalence and a stability result. Conference Publications, 2007, 2007 (Special) : 467-476. doi: 10.3934/proc.2007.2007.467 [16] Stephen McDowall, Plamen Stefanov, Alexandru Tamasan. Gauge equivalence in stationary radiative transport through media with varying index of refraction. Inverse Problems & Imaging, 2010, 4 (1) : 151-167. doi: 10.3934/ipi.2010.4.151 [17] Louis Tcheugoue Tebou. Equivalence between observability and stabilization for a class of second order semilinear evolution. Conference Publications, 2009, 2009 (Special) : 744-752. doi: 10.3934/proc.2009.2009.744 [18] Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415 [19] Chris Good, Sergio Macías. What is topological about topological dynamics?. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1007-1031. doi: 10.3934/dcds.2018043 [20] David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

2018 Impact Factor: 0.545