# American Institute of Mathematical Sciences

March  2009, 2(1): 113-147. doi: 10.3934/dcdss.2009.2.113

## Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions

 1 Department of Mathematics, University of Missouri, Columbia, MO, 65211, United States 2 Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 6086, SP2MI, 86962 Chasseneuil Futuroscope Cedex

Received  February 2008 Revised  August 2008 Published  January 2009

We consider a model of non-isothermal phase separation taking place in a confined container. The order parameter $\phi$ is governed by a viscous or non-viscous Cahn-Hilliard type equation which is coupled with a heat equation for the temperature $\theta$. The former is subject to a nonlinear dynamic boundary condition recently proposed by physicists to account for interactions with the walls, while the latter is endowed with a standard (Dirichlet, Neumann or Robin) boundary condition. We indicate by $\alpha$ the viscosity coefficient, by $\varepsilon$ a (small) relaxation parameter multiplying $\partial _{t}\theta$ in the heat equation and by $\delta$ a small latent heat coefficient (satisfying $\delta \leq \lambda \alpha$, $\delta \leq \overline{\lambda }\varepsilon$, $\lambda , \overline{\lambda }>0$) multiplying $\Delta \theta$ in the Cahn-Hilliard equation and $\partial _{t}\phi$ in the heat equation. Then, we construct a family of exponential attractors $\mathcal{M}_{\varepsilon ,\delta ,\alpha }$ which is a robust perturbation of an exponential attractor $\mathcal{M} _{0,0,\alpha }$ of the (isothermal) viscous ($\alpha >0$) Cahn-Hilliard equation, namely, the symmetric Hausdorff distance between $\mathcal{M} _{\varepsilon ,\delta ,\alpha }$ and $\mathcal{M}_{0,0,\alpha }$ goes to 0, for each fixed value of $\alpha >0,$ as $( \varepsilon ,\delta)$ goes to $(0,0),$ in an explicitly controlled way. Moreover, the robustness of this family of exponential attractors $\mathcal{M}_{\varepsilon ,\delta ,\alpha }$ with respect to $( \delta ,\alpha ) \rightarrow ( 0,0) ,$ for each fixed value of $\varepsilon >0,$ is also obtained. Finally, assuming that the nonlinearities are real analytic, with no growth restrictions, the convergence of solutions to single equilibria, as time goes to infinity, is also proved.
Citation: Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113
 [1] Cecilia Cavaterra, Maurizio Grasselli, Hao Wu. Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1855-1890. doi: 10.3934/cpaa.2014.13.1855 [2] Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581 [3] Ciprian G. Gal. Robust exponential attractors for a conserved Cahn-Hilliard model with singularly perturbed boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (4) : 819-836. doi: 10.3934/cpaa.2008.7.819 [4] Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419 [5] Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517 [6] Riccarda Rossi. On two classes of generalized viscous Cahn-Hilliard equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 405-430. doi: 10.3934/cpaa.2005.4.405 [7] Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625 [8] Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207 [9] Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275 [10] Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511 [11] Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881 [12] Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009 [13] Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145 [14] Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630 [15] Anna Kostianko, Sergey Zelik. Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2069-2094. doi: 10.3934/cpaa.2015.14.2069 [16] Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127 [17] Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669 [18] Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308 [19] Francesco Della Porta, Maurizio Grasselli. Convective nonlocal Cahn-Hilliard equations with reaction terms. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1529-1553. doi: 10.3934/dcdsb.2015.20.1529 [20] Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

2018 Impact Factor: 0.545