doi: 10.3934/dcdsb.2019193

On steady state of some Lotka-Volterra competition-diffusion-advection model

College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China

* Corresponding author: Qi Wang

Received  November 2018 Revised  May 2019 Published  September 2019

In this paper, we study a shadow system of a two species Lotka-Volterra competition-diffusion-advection system, where the ratio of diffusion and advection rates are supposed to be a positive constant. We show that for any given migration, if the product of interspecific competition coefficients of competitors is small, then the shadow system has coexistence state; otherwise we can always find some migration such that it has no coexistence state. Moreover, these findings can be applied to steady state of the two-species Lotka-Volterra competition-diffusion-advection model. Particularly, we show that if the interspecific competition coefficient of the invader is sufficiently small, then rapid diffusion of the invader can drive to coexistence state.

Citation: Qi Wang. On steady state of some Lotka-Volterra competition-diffusion-advection model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019193
References:
[1]

I. Averill, The Effect of Intermediate Advection on Two Competing Species, Doctoral Thesis, Ohio State University, 2012.Google Scholar

[2]

F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Can. Appl. Math. Q., 3 (1995), 379-397. Google Scholar

[3]

R. S. Cantrell and C. Cosner, The effect of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338. doi: 10.1007/BF00167155. Google Scholar

[4]

R. S. Cantrell and C. Cosner, Should a park be an island?, SIAM J. Appl. Math., 53 (1993), 219-252. doi: 10.1137/0153014. Google Scholar

[5]

R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103-145. doi: 10.1007/s002850050122. Google Scholar

[6]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, Wiley, Chichester, UK, 2003. doi: 10.1002/0470871296. Google Scholar

[7]

R. S. CantrellC. Cosner and V. Huston, Permanence in ecological systems with diffusion, Proc. Roy. Soc. Edinburgh A, 123 (1993), 553-559. Google Scholar

[8]

R. S. CantrellC. Cosner and V. Huston, Ecological models, permanence and spatial heterogeneity, Rocky Mount. J. Math., 26 (1996), 1-35. doi: 10.1216/rmjm/1181072101. Google Scholar

[9]

R. S. CantrellC. Cosner and Y. Lou, Multiple reversals of competitive dominance in ecological reserves via external habitat degradation, J. Dynam. Differential Equations, 16 (2004), 973-1010. doi: 10.1007/s10884-004-7831-y. Google Scholar

[10]

C. Cosner and Y. Lou, When does movement toward better environment benefit a population?, J. Math. Analysis Applic., 277 (2003), 489-503. doi: 10.1016/S0022-247X(02)00575-9. Google Scholar

[11]

J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion equations, J. Math. Biol., 37 (1998), 61-83. doi: 10.1007/s002850050120. Google Scholar

[12]

Y. Du, Effects of a degeneracy in the competition model, Part I. Classical and generalized steady-state solutions, J. Diff. Eqs., 181 (2002), 92-132. doi: 10.1006/jdeq.2001.4074. Google Scholar

[13]

Y. Du, Effects of a degeneracy in the competition model, Part II. Perturbation and dynamical behavior, J. Diff. Eqs., 181 (2002), 133-164. doi: 10.1006/jdeq.2001.4075. Google Scholar

[14]

Y. Du, Realization of prescribed patterns in the competition model, J. Diff. Eqs., 193 (2003), 147-179. doi: 10.1016/S0022-0396(03)00056-1. Google Scholar

[15]

J. E. Furter and J. López-Gómez, Diffusion-mediated permanence problem for a heterogeneous Lotka-Volterra competition model, Proc. Roy. Soc. Edinburgh A, 127 (1997), 281-336. doi: 10.1017/S0308210500023659. Google Scholar

[16]

A. Hastings, Spatial heterogeneity and ecological models, Ecology, 71 (1990), 426-428. doi: 10.2307/1940296. Google Scholar

[17]

X. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: heterogeneity vs. homogeneity, J. Diff. Eqs., 254 (2013), 528-546. doi: 10.1016/j.jde.2012.08.032. Google Scholar

[18]

X. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system II: the general case, J. Diff. Eqs., 254 (2013), 4088-4108. doi: 10.1016/j.jde.2013.02.009. Google Scholar

[19]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity I, Comm. Pure Appl. Math., 69 (2016), 981-1014. doi: 10.1002/cpa.21596. Google Scholar

[20]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, II, Calc. Var. Partial Differential Equations, 55 (2016), Art. 25, 20 pp. doi: 10.1007/s00526-016-0964-0. Google Scholar

[21]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, III, Calc. Var. Partial Differential Equations 56 (2017), Art. 132, 26 pp. doi: 10.1007/s00526-017-1234-5. Google Scholar

[22]

E. E. HolmesM. A. LewisJ. E. Banks and R. R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology, 75 (1994), 17-29. doi: 10.2307/1939378. Google Scholar

[23]

V. Hutson, J. López-Gómez, K. Mischaikow and G. Vickers, Limit behavior for a competing species problem with diffusion, in Dynamical Systems and applications, World Scientiffc Series Applicable Analysis, 4, World Scientiffc, River Edge, NJ, (1995), 343–358. doi: 10.1142/9789812796417_0022. Google Scholar

[24]

V. HutsonY. Lou and K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics, J. Diff. Eqs., 185 (2002), 97-136. doi: 10.1006/jdeq.2001.4157. Google Scholar

[25]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coeffcients, J. Diff. Eqs., 211 (2005), 135-161. doi: 10.1016/j.jde.2004.06.003. Google Scholar

[26]

V. HutsonY. LouK. Mischaikow and P. Poláčik, Competing species near the degenerate limit, SIAM J. Math. Anal., 35 (2003), 453-491. doi: 10.1137/S0036141002402189. Google Scholar

[27]

V. HutsonS. MartinezK. Mischaikow and G. T. Vicker, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517. doi: 10.1007/s00285-003-0210-1. Google Scholar

[28]

V. HutsonK. Mischaikow and P. Polá$\breve{c}$ik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), 501-533. doi: 10.1007/s002850100106. Google Scholar

[29]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk, 3 (1948), 3-95. Google Scholar

[30]

F. LiL. Wang and Y. Wang, On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 669-686. doi: 10.3934/dcdsb.2011.15.669. Google Scholar

[31]

J. López-Gómez, Coexistence and meta-coexistence for competing species, Houston J. Math., 29 (2003), 483-536. Google Scholar

[32]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Eqs., 223 (2006), 400-426. doi: 10.1016/j.jde.2005.05.010. Google Scholar

[33]

Y. LouS. Martinez and P. Polá$\breve{c}$ik, Loops and branches of coexistence states in a Lotka-Volterra competition model, J. Diff. Eqs., 230 (2006), 720-742. doi: 10.1016/j.jde.2006.04.005. Google Scholar

[34]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5. Google Scholar

show all references

References:
[1]

I. Averill, The Effect of Intermediate Advection on Two Competing Species, Doctoral Thesis, Ohio State University, 2012.Google Scholar

[2]

F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Can. Appl. Math. Q., 3 (1995), 379-397. Google Scholar

[3]

R. S. Cantrell and C. Cosner, The effect of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338. doi: 10.1007/BF00167155. Google Scholar

[4]

R. S. Cantrell and C. Cosner, Should a park be an island?, SIAM J. Appl. Math., 53 (1993), 219-252. doi: 10.1137/0153014. Google Scholar

[5]

R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103-145. doi: 10.1007/s002850050122. Google Scholar

[6]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, Wiley, Chichester, UK, 2003. doi: 10.1002/0470871296. Google Scholar

[7]

R. S. CantrellC. Cosner and V. Huston, Permanence in ecological systems with diffusion, Proc. Roy. Soc. Edinburgh A, 123 (1993), 553-559. Google Scholar

[8]

R. S. CantrellC. Cosner and V. Huston, Ecological models, permanence and spatial heterogeneity, Rocky Mount. J. Math., 26 (1996), 1-35. doi: 10.1216/rmjm/1181072101. Google Scholar

[9]

R. S. CantrellC. Cosner and Y. Lou, Multiple reversals of competitive dominance in ecological reserves via external habitat degradation, J. Dynam. Differential Equations, 16 (2004), 973-1010. doi: 10.1007/s10884-004-7831-y. Google Scholar

[10]

C. Cosner and Y. Lou, When does movement toward better environment benefit a population?, J. Math. Analysis Applic., 277 (2003), 489-503. doi: 10.1016/S0022-247X(02)00575-9. Google Scholar

[11]

J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion equations, J. Math. Biol., 37 (1998), 61-83. doi: 10.1007/s002850050120. Google Scholar

[12]

Y. Du, Effects of a degeneracy in the competition model, Part I. Classical and generalized steady-state solutions, J. Diff. Eqs., 181 (2002), 92-132. doi: 10.1006/jdeq.2001.4074. Google Scholar

[13]

Y. Du, Effects of a degeneracy in the competition model, Part II. Perturbation and dynamical behavior, J. Diff. Eqs., 181 (2002), 133-164. doi: 10.1006/jdeq.2001.4075. Google Scholar

[14]

Y. Du, Realization of prescribed patterns in the competition model, J. Diff. Eqs., 193 (2003), 147-179. doi: 10.1016/S0022-0396(03)00056-1. Google Scholar

[15]

J. E. Furter and J. López-Gómez, Diffusion-mediated permanence problem for a heterogeneous Lotka-Volterra competition model, Proc. Roy. Soc. Edinburgh A, 127 (1997), 281-336. doi: 10.1017/S0308210500023659. Google Scholar

[16]

A. Hastings, Spatial heterogeneity and ecological models, Ecology, 71 (1990), 426-428. doi: 10.2307/1940296. Google Scholar

[17]

X. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: heterogeneity vs. homogeneity, J. Diff. Eqs., 254 (2013), 528-546. doi: 10.1016/j.jde.2012.08.032. Google Scholar

[18]

X. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system II: the general case, J. Diff. Eqs., 254 (2013), 4088-4108. doi: 10.1016/j.jde.2013.02.009. Google Scholar

[19]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity I, Comm. Pure Appl. Math., 69 (2016), 981-1014. doi: 10.1002/cpa.21596. Google Scholar

[20]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, II, Calc. Var. Partial Differential Equations, 55 (2016), Art. 25, 20 pp. doi: 10.1007/s00526-016-0964-0. Google Scholar

[21]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, III, Calc. Var. Partial Differential Equations 56 (2017), Art. 132, 26 pp. doi: 10.1007/s00526-017-1234-5. Google Scholar

[22]

E. E. HolmesM. A. LewisJ. E. Banks and R. R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology, 75 (1994), 17-29. doi: 10.2307/1939378. Google Scholar

[23]

V. Hutson, J. López-Gómez, K. Mischaikow and G. Vickers, Limit behavior for a competing species problem with diffusion, in Dynamical Systems and applications, World Scientiffc Series Applicable Analysis, 4, World Scientiffc, River Edge, NJ, (1995), 343–358. doi: 10.1142/9789812796417_0022. Google Scholar

[24]

V. HutsonY. Lou and K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics, J. Diff. Eqs., 185 (2002), 97-136. doi: 10.1006/jdeq.2001.4157. Google Scholar

[25]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coeffcients, J. Diff. Eqs., 211 (2005), 135-161. doi: 10.1016/j.jde.2004.06.003. Google Scholar

[26]

V. HutsonY. LouK. Mischaikow and P. Poláčik, Competing species near the degenerate limit, SIAM J. Math. Anal., 35 (2003), 453-491. doi: 10.1137/S0036141002402189. Google Scholar

[27]

V. HutsonS. MartinezK. Mischaikow and G. T. Vicker, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517. doi: 10.1007/s00285-003-0210-1. Google Scholar

[28]

V. HutsonK. Mischaikow and P. Polá$\breve{c}$ik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), 501-533. doi: 10.1007/s002850100106. Google Scholar

[29]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk, 3 (1948), 3-95. Google Scholar

[30]

F. LiL. Wang and Y. Wang, On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 669-686. doi: 10.3934/dcdsb.2011.15.669. Google Scholar

[31]

J. López-Gómez, Coexistence and meta-coexistence for competing species, Houston J. Math., 29 (2003), 483-536. Google Scholar

[32]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Eqs., 223 (2006), 400-426. doi: 10.1016/j.jde.2005.05.010. Google Scholar

[33]

Y. LouS. Martinez and P. Polá$\breve{c}$ik, Loops and branches of coexistence states in a Lotka-Volterra competition model, J. Diff. Eqs., 230 (2006), 720-742. doi: 10.1016/j.jde.2006.04.005. Google Scholar

[34]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5. Google Scholar

[1]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[2]

Benlong Xu, Hongyan Jiang. Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4255-4266. doi: 10.3934/dcdsb.2018136

[3]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[4]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941

[5]

Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061

[6]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[7]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[8]

Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699

[9]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[10]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[11]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[12]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[13]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

[14]

Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055

[15]

Yuan Lou, Salomé Martínez, Wei-Ming Ni. On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 175-190. doi: 10.3934/dcds.2000.6.175

[16]

Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300

[17]

De Tang. Dynamical behavior for a Lotka-Volterra weak competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4913-4928. doi: 10.3934/dcdsb.2019037

[18]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

[19]

Fang Li, Liping Wang, Yang Wang. On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 669-686. doi: 10.3934/dcdsb.2011.15.669

[20]

Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (17)
  • HTML views (71)
  • Cited by (0)

Other articles
by authors

[Back to Top]