January  2020, 25(1): 401-414. doi: 10.3934/dcdsb.2019187

Bi-center problem and Hopf cyclicity of a Cubic Liénard system

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author: Xingwu Chen(xingwu.chen@hotmail.com)

Received  June 2018 Published  September 2019

Fund Project: The second author is supported by Graduate Student's Research and Innovation Fund 2018YJSY047 and Doctoral Graduate Student's Academic Visit Fund of Sichuan University. The third author is supported by NSFC 11871355

In this paper we investigate the bi-center problem and the total Hopf cyclicity of two center-foci for the general cubic Liénard system which has three distinct equilibria and is equivalent to the general Liénard equation with cubic damping and restoring force. The location of these three equilibria is arbitrary, specially without any kind of symmetry. We find the necessary and sufficient condition for the existence of bi-centers and prove that there is no case of a unique center. On the Hopf cyclicity we prove that there are totally $ 9 $ possible styles of small amplitude limit cycles surrounding these two center-foci and $ 6 $ styles of them can occur, from which the total Hopf cyclicity is no more than $ 4 $ and no less than $ 2 $.

Citation: Min Hu, Tao Li, Xingwu Chen. Bi-center problem and Hopf cyclicity of a Cubic Liénard system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 401-414. doi: 10.3934/dcdsb.2019187
References:
[1]

N. N. Bautin, On the number of limit cycles appearing with variation of the coefficients from an equilibrium state of the type of a focus or a center, Matematicheskii Sbornik N.S., 30 (1952), 181-196. Google Scholar

[2]

X. ChenJ. LlibreZ. Wang and W. Zhang, Restricted independence in displacement function for better estimation of cyclicity, J. Differential Equations, 262 (2017), 5773-5791. doi: 10.1016/j.jde.2017.02.015. Google Scholar

[3]

L. ChenZ. Lu and D. Wang, A class of cubic systems with two centers or two foci, J. Math. Anal. Appl., 242 (2000), 154-163. doi: 10.1006/jmaa.1999.6630. Google Scholar

[4]

S. -N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982. Google Scholar

[5]

C. Christopher and C. Li, Limit Cycles of Differential Equations, Birkh$\ddot{a}$user Verlag, Basel, 2007. Google Scholar

[6]

C. Christopher and S. Lynch, Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces, Nonlinearity, 12 (1999), 1099-1112. doi: 10.1088/0951-7715/12/4/321. Google Scholar

[7]

F. DumortierC. Li and Z. Zhang, Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops, J. Differential Equations, 139 (1997), 146-193. doi: 10.1006/jdeq.1997.3285. Google Scholar

[8]

F. Dumortier, J. Llibre and J. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, New York, 2006. Google Scholar

[9]

I. A. GarcíaJ. Llibre and S. Maza, The Hopf cyclicity of the centers of a class of quintic polynomial vector fields, J. Differential Equations, 258 (2015), 1990-2009. doi: 10.1016/j.jde.2014.11.018. Google Scholar

[10]

J. Giné, Center conditions for polynomial Liénard systems, Qual. Theory Dyn. Syst., 16 (2017), 119-126. doi: 10.1007/s12346-016-0202-3. Google Scholar

[11]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3$^{rd}$ edition, Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-3978-7. Google Scholar

[12]

C. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Int. J. Bifurcation & Chaos, 13 (2003), 47-106. doi: 10.1142/S0218127403006352. Google Scholar

[13]

C. Liu, The cyclicity of period annuli of a class of quadratic reversible systems with two centers, J. Differential Equations, 252 (2012), 5260-5273. doi: 10.1016/j.jde.2012.02.005. Google Scholar

[14]

Y. Liu and W. Huang, A cubic system with twelve small amplitude limit cycles, Bull. Sci. math., 129 (2005), 83-98. doi: 10.1016/j.bulsci.2004.05.004. Google Scholar

[15]

Y. Liu and J. Li, Some Classical Problems for Planar Vector Fields(in Chinese), Science Press, Beijing, 2010.Google Scholar

[16]

Y. Liu and J. Li, Complete study on a bi-center problem for the Z$_2$-equivariant cubic vector fields, Acta Math. Sin. English Series, 27 (2011), 1379-1394. doi: 10.1007/s10114-011-8412-8. Google Scholar

[17]

L. PengZ. Feng and C. Liu, Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers, Disc. Contin. Dyn. Syst., 34 (2014), 4807-4826. doi: 10.3934/dcds.2014.34.4807. Google Scholar

[18]

V. G. RomanovskiW. Fernandes and R. Oliveira, Bi-center problem for some classes of Z$_2$-equivariant systems, J. Comput. Appl. Math., 320 (2017), 61-75. doi: 10.1016/j.cam.2017.02.003. Google Scholar

[19]

V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkh$\ddot{a}$user Verlag, Boston, 2009. doi: 10.1007/978-0-8176-4727-8. Google Scholar

[20]

Y. Tian and M. Han, Hopf bifurcation for two types of Liénard systems, J. Differential Equations, 251 (2011), 834-859. doi: 10.1016/j.jde.2011.05.029. Google Scholar

[21]

Y. WuG. Chen and X. Yang, Kukles system with two fine foci, Ann. of Diff. Eqs., 15 (1999), 422-437. Google Scholar

[22]

P. Yu and M. Han, Twelve limit cycles in a cubic case of the 16th Hilbert problem, Int. J. Bifurcation & Chaos, 15 (2005), 2191-2205. doi: 10.1142/S0218127405013289. Google Scholar

[23]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1992. Google Scholar

[24]

Z. Zhang, C. Li, Z. Zheng and W. Li, Elementary Theory of Bifurcations of Vector Fields(in Chinese), Higher Education Press, Beijing, 1997.Google Scholar

[25]

H. Żoładek, Eleven small limit cycles in a cubic vector field, Nonlinearity, 8 (1995), 843-860. doi: 10.1088/0951-7715/8/5/011. Google Scholar

show all references

References:
[1]

N. N. Bautin, On the number of limit cycles appearing with variation of the coefficients from an equilibrium state of the type of a focus or a center, Matematicheskii Sbornik N.S., 30 (1952), 181-196. Google Scholar

[2]

X. ChenJ. LlibreZ. Wang and W. Zhang, Restricted independence in displacement function for better estimation of cyclicity, J. Differential Equations, 262 (2017), 5773-5791. doi: 10.1016/j.jde.2017.02.015. Google Scholar

[3]

L. ChenZ. Lu and D. Wang, A class of cubic systems with two centers or two foci, J. Math. Anal. Appl., 242 (2000), 154-163. doi: 10.1006/jmaa.1999.6630. Google Scholar

[4]

S. -N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982. Google Scholar

[5]

C. Christopher and C. Li, Limit Cycles of Differential Equations, Birkh$\ddot{a}$user Verlag, Basel, 2007. Google Scholar

[6]

C. Christopher and S. Lynch, Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces, Nonlinearity, 12 (1999), 1099-1112. doi: 10.1088/0951-7715/12/4/321. Google Scholar

[7]

F. DumortierC. Li and Z. Zhang, Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops, J. Differential Equations, 139 (1997), 146-193. doi: 10.1006/jdeq.1997.3285. Google Scholar

[8]

F. Dumortier, J. Llibre and J. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, New York, 2006. Google Scholar

[9]

I. A. GarcíaJ. Llibre and S. Maza, The Hopf cyclicity of the centers of a class of quintic polynomial vector fields, J. Differential Equations, 258 (2015), 1990-2009. doi: 10.1016/j.jde.2014.11.018. Google Scholar

[10]

J. Giné, Center conditions for polynomial Liénard systems, Qual. Theory Dyn. Syst., 16 (2017), 119-126. doi: 10.1007/s12346-016-0202-3. Google Scholar

[11]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3$^{rd}$ edition, Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-3978-7. Google Scholar

[12]

C. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Int. J. Bifurcation & Chaos, 13 (2003), 47-106. doi: 10.1142/S0218127403006352. Google Scholar

[13]

C. Liu, The cyclicity of period annuli of a class of quadratic reversible systems with two centers, J. Differential Equations, 252 (2012), 5260-5273. doi: 10.1016/j.jde.2012.02.005. Google Scholar

[14]

Y. Liu and W. Huang, A cubic system with twelve small amplitude limit cycles, Bull. Sci. math., 129 (2005), 83-98. doi: 10.1016/j.bulsci.2004.05.004. Google Scholar

[15]

Y. Liu and J. Li, Some Classical Problems for Planar Vector Fields(in Chinese), Science Press, Beijing, 2010.Google Scholar

[16]

Y. Liu and J. Li, Complete study on a bi-center problem for the Z$_2$-equivariant cubic vector fields, Acta Math. Sin. English Series, 27 (2011), 1379-1394. doi: 10.1007/s10114-011-8412-8. Google Scholar

[17]

L. PengZ. Feng and C. Liu, Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers, Disc. Contin. Dyn. Syst., 34 (2014), 4807-4826. doi: 10.3934/dcds.2014.34.4807. Google Scholar

[18]

V. G. RomanovskiW. Fernandes and R. Oliveira, Bi-center problem for some classes of Z$_2$-equivariant systems, J. Comput. Appl. Math., 320 (2017), 61-75. doi: 10.1016/j.cam.2017.02.003. Google Scholar

[19]

V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkh$\ddot{a}$user Verlag, Boston, 2009. doi: 10.1007/978-0-8176-4727-8. Google Scholar

[20]

Y. Tian and M. Han, Hopf bifurcation for two types of Liénard systems, J. Differential Equations, 251 (2011), 834-859. doi: 10.1016/j.jde.2011.05.029. Google Scholar

[21]

Y. WuG. Chen and X. Yang, Kukles system with two fine foci, Ann. of Diff. Eqs., 15 (1999), 422-437. Google Scholar

[22]

P. Yu and M. Han, Twelve limit cycles in a cubic case of the 16th Hilbert problem, Int. J. Bifurcation & Chaos, 15 (2005), 2191-2205. doi: 10.1142/S0218127405013289. Google Scholar

[23]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1992. Google Scholar

[24]

Z. Zhang, C. Li, Z. Zheng and W. Li, Elementary Theory of Bifurcations of Vector Fields(in Chinese), Higher Education Press, Beijing, 1997.Google Scholar

[25]

H. Żoładek, Eleven small limit cycles in a cubic vector field, Nonlinearity, 8 (1995), 843-860. doi: 10.1088/0951-7715/8/5/011. Google Scholar

Figure 1.  Bi-centers
[1]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[2]

Na Li, Maoan Han, Valery G. Romanovski. Cyclicity of some Liénard Systems. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2127-2150. doi: 10.3934/cpaa.2015.14.2127

[3]

Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237

[4]

Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043

[5]

Jianhe Shen, Maoan Han. Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3085-3108. doi: 10.3934/dcds.2013.33.3085

[6]

Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557

[7]

Bin Liu. Quasiperiodic solutions of semilinear Liénard equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 137-160. doi: 10.3934/dcds.2005.12.137

[8]

Robert Roussarie. Putting a boundary to the space of Liénard equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 441-448. doi: 10.3934/dcds.2007.17.441

[9]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[10]

Isaac A. García, Douglas S. Shafer. Cyclicity of a class of polynomial nilpotent center singularities. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2497-2520. doi: 10.3934/dcds.2016.36.2497

[11]

Iliya D. Iliev, Chengzhi Li, Jiang Yu. Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes. Communications on Pure & Applied Analysis, 2010, 9 (3) : 583-610. doi: 10.3934/cpaa.2010.9.583

[12]

Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703

[13]

Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393

[14]

Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485

[15]

Tiantian Ma, Zaihong Wang. Periodic solutions of Liénard equations with resonant isochronous potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1563-1581. doi: 10.3934/dcds.2013.33.1563

[16]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[17]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[18]

A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126

[19]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[20]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

2018 Impact Factor: 1.008

Article outline

Figures and Tables

[Back to Top]