doi: 10.3934/dcdsb.2019179

Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness

School of Mathematics and Statistics, Zhengzhou University, No.100, Science Road, Zhengzhou 450001, China

* Corresponding author: Zhijian Yang

Received  December 2018 Revised  March 2019 Published  July 2019

Fund Project: This work is supported by NSFC (Grant No. 11671367)

The paper investigates the existence of global attractors for a few classes of multi-valued operators. We establish some criteria and give their applications to a strongly damped wave equation with fully supercritical nonlinearities and without the uniqueness of solutions. Moreover, the geometrical structure of the global attractors of the corresponding multi-valued operators is shown.

Citation: Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019179
References:
[1]

A. V. Babin and M. I. Vishik, Maximal attractor of the semigroups corresponding to evolution differential equations, (Russian) Mat. Sb. (N.S.), 126 (1985), 397–419,432. Google Scholar

[2]

A. V. Babin, Attractor of the generalized semi-group generated by an elliptic equation in a cylindrical domain, Russian Acad. Sci. Izv. Math., 44 (1995), 207-223. doi: 10.1070/IM1995v044n02ABEH001594. Google Scholar

[3]

F. BalibreaT. CaraballoP. E. Kloeden and J. Valero, Recent developments in dynamical systems: Three perspectives, Int. J. Bifurcat. Chaos, 20 (2010), 2591-2636. doi: 10.1142/S0218127410027246. Google Scholar

[4]

J. M. Ball, On the asymptotic behavior of generalized processes with applications to nonlinear evolution equations, J. Differential Equations, 27 (1978), 224-265. doi: 10.1016/0022-0396(78)90032-3. Google Scholar

[5]

J. M. Ball, Continuity properties and attractors of generalized semiflows and the Navier-Stokes equations, Nonlinear Science, 7 (1997), 475-502. doi: 10.1007/s003329900037. Google Scholar

[6]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Cont. Dyn. Sys., 10 (2004), 31-52. doi: 10.3934/dcds.2004.10.31. Google Scholar

[7]

L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping, Discrete Contin. Dyn. Syst., 22 (2008), 835-860. doi: 10.3934/dcds.2008.22.835. Google Scholar

[8]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683. doi: 10.1016/j.jde.2010.03.009. Google Scholar

[9]

T. CaraballoP. Marín-Rubio and J. C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour, Set-Valued Anal., 11 (2003), 297-322. doi: 10.1023/A:1024422619616. Google Scholar

[10]

A. N. CarvalhoJ. W. Cholewa and T. Dlotko, Damped wave equations with fast growing dissipative nonlinearities, Discrete Contin. Dyn. Syst.: A, 24 (2009), 1147-1165. doi: 10.3934/dcds.2009.24.1147. Google Scholar

[11]

V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for reaction-diffusion systems, Topological Methods in Nonlinear Analysis, 7 (1996), 49-76. doi: 10.12775/TMNA.1996.002. Google Scholar

[12]

V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76 (1997), 913-964. doi: 10.1016/S0021-7824(97)89978-3. Google Scholar

[13]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002. Google Scholar

[14]

V. V. ChepyzhovM. Conti and V. Pata, A minimal approach to the theory of global attractors, Discrete Contin. Dyn. Syst., 32 (2012), 2079-2088. doi: 10.3934/dcds.2012.32.2079. Google Scholar

[15]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Memoirs of AMS, Amer. Math. Soc. Providence, RI, 195 (2008), viii+183 pp. doi: 10.1090/memo/0912. Google Scholar

[16]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262. doi: 10.1016/j.jde.2011.08.022. Google Scholar

[17]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Analysis, 128 (2015), 303-324. doi: 10.1016/j.na.2015.08.009. Google Scholar

[18]

S. DashkovskiyP. FeketaO. Kapustyan and I. Romaniuk, Invariance and stability of global attractors for multi-valued impulsive dynamical systems, J. Math. Anal. Appl., 458 (2018), 193-218. doi: 10.1016/j.jmaa.2017.09.001. Google Scholar

[19]

F. Dell'Oro, Global attractors for strongly damped wave equations with subcritical-critical nonlinearities, Communications on Pure and Applied Analysis, 12 (2013), 1015-1027. doi: 10.3934/cpaa.2013.12.1015. Google Scholar

[20]

F. Dell'Oro and V. Pata, Long-term analysis of strongly damped nonlinear wave equations, Nonlinearity, 24 (2011), 3413-3435. doi: 10.1088/0951-7715/24/12/006. Google Scholar

[21]

F. Dell'Oro and V. Pata, Strongly damped wave equations with critical nonlinearities, Nonlinear Analysis, 75 (2012), 5723-5735. doi: 10.1016/j.na.2012.05.019. Google Scholar

[22]

V. KalantarovA. Savostianov and S. Zelik, Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincaré, 17 (2016), 2555-2584. doi: 10.1007/s00023-016-0480-y. Google Scholar

[23]

P. Kalita and G. Lukaszewicz, Global attractors for multi-valued semiflows with weak continuity properties, Nonlinear Analysis, 101 (2014), 124-143. doi: 10.1016/j.na.2014.01.026. Google Scholar

[24]

A. V. KapustyanA. V. Pankov and J. Valero, On global attractors of multi-valued semiflows generated by the 3D Benard system, Set-Valued Var. Anal., 20 (2012), 445-465. doi: 10.1007/s11228-011-0197-5. Google Scholar

[25]

V. S. Melnik, Multi-valued dynamics of nonlinear infinite dimensional systems, Preprint of NAS of Ukraine, Institute of Cybernetics, Kyiv, 94 (1994).Google Scholar

[26]

V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Analysis, 6 (1998), 83-111. doi: 10.1023/A:1008608431399. Google Scholar

[27]

A. Savostianov, Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains, Adv. Differential Equations, 20 (2015), 495-530. Google Scholar

[28]

A. Savostianov and S. Zelik, Recent progress in attractors for quintic wave equations, Mathemaica Bohemica, 139 (2014), 657-665. Google Scholar

[29]

A. Savostianov, Strichartz Estimates and Smooth Attractors of Dissipative Hyperbolic Equations, Doctoral dissertation, University of Surrey, 2015.Google Scholar

[30]

E. Vitillaro, On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and supercritical sources, J. Differential Equations, 265 (2018), 4873-4941. doi: 10.1016/j.jde.2018.06.022. Google Scholar

[31]

Y. J. Wang and L. Yang, Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness, Discrete Cont. Dyn. Sys. B, 24 (2019), 1961-1987. Google Scholar

[32]

Z. J. YangN. Feng and T. F. Ma, Global attractor for the generalized double dispersion equation, Nonlinear Analysis, 115 (2015), 103-116. doi: 10.1016/j.na.2014.12.006. Google Scholar

[33]

Z. J. YangZ. M. Liu and N. Feng, Longtime behavior of the semilinear wave equation with gentle dissipation, Discrete Cont. Dyn. Sys. A, 36 (2016), 6557-6580. doi: 10.3934/dcds.2016084. Google Scholar

[34]

Z. J. Yang and Z. M. Liu, Global attractor for a strongly damped wave equation with fully supercritical nonlinearities, Discrete Cont. Dyn. Sys. A, 37 (2017), 2181-2205. doi: 10.3934/dcds.2017094. Google Scholar

[35]

M. C. Zelati and P. Kalita, Minimality properties of set-valued processes and their pullback attractors, SIAM Journal on Mathematical Analysis, 47 (2015), 1530-1561. doi: 10.1137/140978995. Google Scholar

[36]

S. Zelik, Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities, Discrete Cont. Dyn. Sys., 11 (2004), 351-392. doi: 10.3934/dcds.2004.11.351. Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Maximal attractor of the semigroups corresponding to evolution differential equations, (Russian) Mat. Sb. (N.S.), 126 (1985), 397–419,432. Google Scholar

[2]

A. V. Babin, Attractor of the generalized semi-group generated by an elliptic equation in a cylindrical domain, Russian Acad. Sci. Izv. Math., 44 (1995), 207-223. doi: 10.1070/IM1995v044n02ABEH001594. Google Scholar

[3]

F. BalibreaT. CaraballoP. E. Kloeden and J. Valero, Recent developments in dynamical systems: Three perspectives, Int. J. Bifurcat. Chaos, 20 (2010), 2591-2636. doi: 10.1142/S0218127410027246. Google Scholar

[4]

J. M. Ball, On the asymptotic behavior of generalized processes with applications to nonlinear evolution equations, J. Differential Equations, 27 (1978), 224-265. doi: 10.1016/0022-0396(78)90032-3. Google Scholar

[5]

J. M. Ball, Continuity properties and attractors of generalized semiflows and the Navier-Stokes equations, Nonlinear Science, 7 (1997), 475-502. doi: 10.1007/s003329900037. Google Scholar

[6]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Cont. Dyn. Sys., 10 (2004), 31-52. doi: 10.3934/dcds.2004.10.31. Google Scholar

[7]

L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping, Discrete Contin. Dyn. Syst., 22 (2008), 835-860. doi: 10.3934/dcds.2008.22.835. Google Scholar

[8]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683. doi: 10.1016/j.jde.2010.03.009. Google Scholar

[9]

T. CaraballoP. Marín-Rubio and J. C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour, Set-Valued Anal., 11 (2003), 297-322. doi: 10.1023/A:1024422619616. Google Scholar

[10]

A. N. CarvalhoJ. W. Cholewa and T. Dlotko, Damped wave equations with fast growing dissipative nonlinearities, Discrete Contin. Dyn. Syst.: A, 24 (2009), 1147-1165. doi: 10.3934/dcds.2009.24.1147. Google Scholar

[11]

V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for reaction-diffusion systems, Topological Methods in Nonlinear Analysis, 7 (1996), 49-76. doi: 10.12775/TMNA.1996.002. Google Scholar

[12]

V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76 (1997), 913-964. doi: 10.1016/S0021-7824(97)89978-3. Google Scholar

[13]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002. Google Scholar

[14]

V. V. ChepyzhovM. Conti and V. Pata, A minimal approach to the theory of global attractors, Discrete Contin. Dyn. Syst., 32 (2012), 2079-2088. doi: 10.3934/dcds.2012.32.2079. Google Scholar

[15]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Memoirs of AMS, Amer. Math. Soc. Providence, RI, 195 (2008), viii+183 pp. doi: 10.1090/memo/0912. Google Scholar

[16]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262. doi: 10.1016/j.jde.2011.08.022. Google Scholar

[17]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Analysis, 128 (2015), 303-324. doi: 10.1016/j.na.2015.08.009. Google Scholar

[18]

S. DashkovskiyP. FeketaO. Kapustyan and I. Romaniuk, Invariance and stability of global attractors for multi-valued impulsive dynamical systems, J. Math. Anal. Appl., 458 (2018), 193-218. doi: 10.1016/j.jmaa.2017.09.001. Google Scholar

[19]

F. Dell'Oro, Global attractors for strongly damped wave equations with subcritical-critical nonlinearities, Communications on Pure and Applied Analysis, 12 (2013), 1015-1027. doi: 10.3934/cpaa.2013.12.1015. Google Scholar

[20]

F. Dell'Oro and V. Pata, Long-term analysis of strongly damped nonlinear wave equations, Nonlinearity, 24 (2011), 3413-3435. doi: 10.1088/0951-7715/24/12/006. Google Scholar

[21]

F. Dell'Oro and V. Pata, Strongly damped wave equations with critical nonlinearities, Nonlinear Analysis, 75 (2012), 5723-5735. doi: 10.1016/j.na.2012.05.019. Google Scholar

[22]

V. KalantarovA. Savostianov and S. Zelik, Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincaré, 17 (2016), 2555-2584. doi: 10.1007/s00023-016-0480-y. Google Scholar

[23]

P. Kalita and G. Lukaszewicz, Global attractors for multi-valued semiflows with weak continuity properties, Nonlinear Analysis, 101 (2014), 124-143. doi: 10.1016/j.na.2014.01.026. Google Scholar

[24]

A. V. KapustyanA. V. Pankov and J. Valero, On global attractors of multi-valued semiflows generated by the 3D Benard system, Set-Valued Var. Anal., 20 (2012), 445-465. doi: 10.1007/s11228-011-0197-5. Google Scholar

[25]

V. S. Melnik, Multi-valued dynamics of nonlinear infinite dimensional systems, Preprint of NAS of Ukraine, Institute of Cybernetics, Kyiv, 94 (1994).Google Scholar

[26]

V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Analysis, 6 (1998), 83-111. doi: 10.1023/A:1008608431399. Google Scholar

[27]

A. Savostianov, Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains, Adv. Differential Equations, 20 (2015), 495-530. Google Scholar

[28]

A. Savostianov and S. Zelik, Recent progress in attractors for quintic wave equations, Mathemaica Bohemica, 139 (2014), 657-665. Google Scholar

[29]

A. Savostianov, Strichartz Estimates and Smooth Attractors of Dissipative Hyperbolic Equations, Doctoral dissertation, University of Surrey, 2015.Google Scholar

[30]

E. Vitillaro, On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and supercritical sources, J. Differential Equations, 265 (2018), 4873-4941. doi: 10.1016/j.jde.2018.06.022. Google Scholar

[31]

Y. J. Wang and L. Yang, Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness, Discrete Cont. Dyn. Sys. B, 24 (2019), 1961-1987. Google Scholar

[32]

Z. J. YangN. Feng and T. F. Ma, Global attractor for the generalized double dispersion equation, Nonlinear Analysis, 115 (2015), 103-116. doi: 10.1016/j.na.2014.12.006. Google Scholar

[33]

Z. J. YangZ. M. Liu and N. Feng, Longtime behavior of the semilinear wave equation with gentle dissipation, Discrete Cont. Dyn. Sys. A, 36 (2016), 6557-6580. doi: 10.3934/dcds.2016084. Google Scholar

[34]

Z. J. Yang and Z. M. Liu, Global attractor for a strongly damped wave equation with fully supercritical nonlinearities, Discrete Cont. Dyn. Sys. A, 37 (2017), 2181-2205. doi: 10.3934/dcds.2017094. Google Scholar

[35]

M. C. Zelati and P. Kalita, Minimality properties of set-valued processes and their pullback attractors, SIAM Journal on Mathematical Analysis, 47 (2015), 1530-1561. doi: 10.1137/140978995. Google Scholar

[36]

S. Zelik, Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities, Discrete Cont. Dyn. Sys., 11 (2004), 351-392. doi: 10.3934/dcds.2004.11.351. Google Scholar

[1]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

[2]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[3]

Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3227-3250. doi: 10.3934/dcds.2016.36.3227

[4]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[5]

Dalila Azzam-Laouir, Warda Belhoula, Charles Castaing, M. D. P. Monteiro Marques. Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators. Evolution Equations & Control Theory, 2019, 0 (0) : 1-36. doi: 10.3934/eect.2020004

[6]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[7]

Boling Guo, Zhaohui Huo. The global attractor of the damped, forced generalized Korteweg de Vries-Benjamin-Ono equation in $L^2$. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 121-136. doi: 10.3934/dcds.2006.16.121

[8]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[9]

Filippo Dell'Oro. Global attractors for strongly damped wave equations with subcritical-critical nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1015-1027. doi: 10.3934/cpaa.2013.12.1015

[10]

Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1961-1987. doi: 10.3934/dcdsb.2018257

[11]

Chien-Hong Cho, Marcus Wunsch. Global weak solutions to the generalized Proudman-Johnson equation. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1387-1396. doi: 10.3934/cpaa.2012.11.1387

[12]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[13]

Pengyan Ding, Zhijian Yang. Attractors of the strongly damped Kirchhoff wave equation on $\mathbb{R}^{N}$. Communications on Pure & Applied Analysis, 2019, 18 (2) : 825-843. doi: 10.3934/cpaa.2019040

[14]

Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061

[15]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[16]

Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949

[17]

Milena Stanislavova. On the global attractor for the damped Benjamin-Bona-Mahony equation. Conference Publications, 2005, 2005 (Special) : 824-832. doi: 10.3934/proc.2005.2005.824

[18]

Siegfried Carl, Christoph Tietz. Quasilinear elliptic equations with measures and multi-valued lower order terms. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 193-212. doi: 10.3934/dcdss.2018012

[19]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[20]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

2018 Impact Factor: 1.008

Article outline

[Back to Top]