doi: 10.3934/dcdsb.2019164

Remark on exponential decay-in-time of global strong solutions to 3D inhomogeneous incompressible micropolar equations

Department of Mathematics and Statistics, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China

* Corresponding author: Zhuan Ye

Received  July 2018 Revised  February 2019 Published  July 2019

Fund Project: The author is supported by the National Natural Science Foundation of China (No. 11701232) and the Natural Science Foundation of Jiangsu Province (No. BK20170224)

This paper addresses the Cauchy problem of the three-dimensional inhomogeneous incompressible micropolar equations. We prove the global existence and exponential decay-in-time of strong solution with vacuum over the whole space $ \mathbb{R}^{3} $ provided that the initial data are sufficiently small. The initial vacuum is allowed.

Citation: Zhuan Ye. Remark on exponential decay-in-time of global strong solutions to 3D inhomogeneous incompressible micropolar equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019164
References:
[1]

H. AbidiG. Gui and P. Zhang, On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces, Arch. Ration. Mech. Anal., 204 (2012), 189-230. doi: 10.1007/s00205-011-0473-4. Google Scholar

[2]

H. AbidiG. L. Gui and P. Zhang, On the decay and stability of global solutions to the 3D inhomogeneous Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 832-881. doi: 10.1002/cpa.20351. Google Scholar

[3]

S. N. Antontesv, A. V. Kazhikov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam, 1990. Google Scholar

[4]

Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724. doi: 10.1016/j.jde.2011.09.035. Google Scholar

[5]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201. doi: 10.1081/PDE-120021191. Google Scholar

[6]

W. CraigX. D. Huang and Y. Wang, Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations, J. Math. Fluid Mech., 15 (2013), 747-758. doi: 10.1007/s00021-013-0133-6. Google Scholar

[7]

R. Danchin and P. Mucha, Incompressible flows with piecewise constant density, Arch. Ration. Mech. Anal., 207 (2013), 991-1023. doi: 10.1007/s00205-012-0586-4. Google Scholar

[8]

R. Danchin and P. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Comm. Pure Appl. Math., 65 (2012), 1458-1480. doi: 10.1002/cpa.21409. Google Scholar

[9]

B. -Q. DongJ. N. Li and J. H. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differential Equations, 262 (2017), 3488-3523. doi: 10.1016/j.jde.2016.11.029. Google Scholar

[10]

B. -Q. DongJ. H. WuX. J. Xu and Z. Ye, Global regularity for the 2D micropolar equations with fractional dissipation, Discrete Contin. Dyn. Syst., 38 (2018), 4133-4162. doi: 10.3934/dcds.2018180. Google Scholar

[11]

B. -Q. Dong and Z. F. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differential Equations, 249 (2010), 200-213. doi: 10.1016/j.jde.2010.03.016. Google Scholar

[12]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18. doi: 10.1512/iumj.1967.16.16001. Google Scholar

[13]

L. C. F. Ferreira and J. C. Precioso, Existence of solutions for the 3D-micropolar fluid system with initial data in Besov-Morrey spaces, Z. Angew. Math. Phys., 64 (2013), 1699-1710. doi: 10.1007/s00033-013-0310-8. Google Scholar

[14]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci., 15 (1977), 105-108. doi: 10.1016/0020-7225(77)90025-8. Google Scholar

[15]

C. He, J. Li and B. Lü, On the Cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, arXiv: 1709.05608v1.Google Scholar

[16]

X. D. Huang and Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627. doi: 10.1016/j.jde.2015.03.008. Google Scholar

[17]

A. V. Kažhikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010. Google Scholar

[18]

J. U. Kim, Weak solutions of an initial boundary value problem for an incompressible viscous fluid with nonnegative density, SIAM J. Math. Anal., 18 (1987), 89-96. doi: 10.1137/0518007. Google Scholar

[19]

O. Ladyzhenskaya and V. Solonnikov, Unique solvability of an initial and boundary value problem for viscous incompressible non-homogeneous fluids, J. Soviet Math., 9 (1978), 697-749. Google Scholar

[20]

J. K. Li, Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536. doi: 10.1016/j.jde.2017.07.021. Google Scholar

[21]

P. -L. Lions, Mathematical Topics in Fluid mMechanics. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications, vol. 1. Clarendon Press/Oxford University Press, New York, 1996. Google Scholar

[22]

G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4612-0641-5. Google Scholar

[23]

G. Łukaszewicz, On nonstationary flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat., 12 (1988), 83-97. Google Scholar

[24]

G. Łukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat., 13 (1989), 105-120. Google Scholar

[25]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system, J. Funct. Anal., 262 (2012), 3556-3584. doi: 10.1016/j.jfa.2012.01.022. Google Scholar

[26]

M. PaicuP. Zhang and Z. F. Zhang, Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density, Comm. Partial Differential Equations, 38 (2013), 1208-1234. doi: 10.1080/03605302.2013.780079. Google Scholar

[27]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117. doi: 10.1137/0521061. Google Scholar

[28]

D. Wang and Z. Ye, Global existence and exponential decay of strong solutions for the inhomogeneous incompressible Navier-Stokes equations with vacuum, arXiv: 1806.04464v1.Google Scholar

[29]

L. T. Xue, Well posedness and zero microrotation viscosity limit of the 2D micropolar fluid equations, Math. Methods Appl. Sci., 34 (2011), 1760-1777. doi: 10.1002/mma.1491. Google Scholar

[30]

N. Yamaguchi, Existence of global strong solution to the micropolar fluid systemin a bounded domain, Math. Methods Appl. Sci., 28 (2005), 1507-1526. doi: 10.1002/mma.617. Google Scholar

[31]

B. Q. Yuan, On the regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space, Proc. Amer. Math. Soc., 138 (2010), 2025-2036. doi: 10.1090/S0002-9939-10-10232-9. Google Scholar

[32]

J. W. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742. doi: 10.1016/j.jde.2015.03.011. Google Scholar

[33]

P. X. ZhangC. Zhao and J. W. Zhang, Global regularity of the three-dimensional equations for nonhomogeneous incompressible fluids, Nonlinear Anal., 110 (2014), 61-76. doi: 10.1016/j.na.2014.07.014. Google Scholar

[34]

P. X. Zhang and M. X. Zhu, Global regularity of 3D nonhomogeneous incompressible micropolar fluids, Acta Appl. Math., 161 (2019), 13–34, https://doi.org/10.1007/s10440-018-0202-1. doi: 10.1007/s10440-018-0202-1. Google Scholar

show all references

References:
[1]

H. AbidiG. Gui and P. Zhang, On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces, Arch. Ration. Mech. Anal., 204 (2012), 189-230. doi: 10.1007/s00205-011-0473-4. Google Scholar

[2]

H. AbidiG. L. Gui and P. Zhang, On the decay and stability of global solutions to the 3D inhomogeneous Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 832-881. doi: 10.1002/cpa.20351. Google Scholar

[3]

S. N. Antontesv, A. V. Kazhikov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam, 1990. Google Scholar

[4]

Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724. doi: 10.1016/j.jde.2011.09.035. Google Scholar

[5]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201. doi: 10.1081/PDE-120021191. Google Scholar

[6]

W. CraigX. D. Huang and Y. Wang, Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations, J. Math. Fluid Mech., 15 (2013), 747-758. doi: 10.1007/s00021-013-0133-6. Google Scholar

[7]

R. Danchin and P. Mucha, Incompressible flows with piecewise constant density, Arch. Ration. Mech. Anal., 207 (2013), 991-1023. doi: 10.1007/s00205-012-0586-4. Google Scholar

[8]

R. Danchin and P. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Comm. Pure Appl. Math., 65 (2012), 1458-1480. doi: 10.1002/cpa.21409. Google Scholar

[9]

B. -Q. DongJ. N. Li and J. H. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differential Equations, 262 (2017), 3488-3523. doi: 10.1016/j.jde.2016.11.029. Google Scholar

[10]

B. -Q. DongJ. H. WuX. J. Xu and Z. Ye, Global regularity for the 2D micropolar equations with fractional dissipation, Discrete Contin. Dyn. Syst., 38 (2018), 4133-4162. doi: 10.3934/dcds.2018180. Google Scholar

[11]

B. -Q. Dong and Z. F. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differential Equations, 249 (2010), 200-213. doi: 10.1016/j.jde.2010.03.016. Google Scholar

[12]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18. doi: 10.1512/iumj.1967.16.16001. Google Scholar

[13]

L. C. F. Ferreira and J. C. Precioso, Existence of solutions for the 3D-micropolar fluid system with initial data in Besov-Morrey spaces, Z. Angew. Math. Phys., 64 (2013), 1699-1710. doi: 10.1007/s00033-013-0310-8. Google Scholar

[14]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci., 15 (1977), 105-108. doi: 10.1016/0020-7225(77)90025-8. Google Scholar

[15]

C. He, J. Li and B. Lü, On the Cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, arXiv: 1709.05608v1.Google Scholar

[16]

X. D. Huang and Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627. doi: 10.1016/j.jde.2015.03.008. Google Scholar

[17]

A. V. Kažhikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010. Google Scholar

[18]

J. U. Kim, Weak solutions of an initial boundary value problem for an incompressible viscous fluid with nonnegative density, SIAM J. Math. Anal., 18 (1987), 89-96. doi: 10.1137/0518007. Google Scholar

[19]

O. Ladyzhenskaya and V. Solonnikov, Unique solvability of an initial and boundary value problem for viscous incompressible non-homogeneous fluids, J. Soviet Math., 9 (1978), 697-749. Google Scholar

[20]

J. K. Li, Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536. doi: 10.1016/j.jde.2017.07.021. Google Scholar

[21]

P. -L. Lions, Mathematical Topics in Fluid mMechanics. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications, vol. 1. Clarendon Press/Oxford University Press, New York, 1996. Google Scholar

[22]

G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4612-0641-5. Google Scholar

[23]

G. Łukaszewicz, On nonstationary flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat., 12 (1988), 83-97. Google Scholar

[24]

G. Łukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat., 13 (1989), 105-120. Google Scholar

[25]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system, J. Funct. Anal., 262 (2012), 3556-3584. doi: 10.1016/j.jfa.2012.01.022. Google Scholar

[26]

M. PaicuP. Zhang and Z. F. Zhang, Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density, Comm. Partial Differential Equations, 38 (2013), 1208-1234. doi: 10.1080/03605302.2013.780079. Google Scholar

[27]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117. doi: 10.1137/0521061. Google Scholar

[28]

D. Wang and Z. Ye, Global existence and exponential decay of strong solutions for the inhomogeneous incompressible Navier-Stokes equations with vacuum, arXiv: 1806.04464v1.Google Scholar

[29]

L. T. Xue, Well posedness and zero microrotation viscosity limit of the 2D micropolar fluid equations, Math. Methods Appl. Sci., 34 (2011), 1760-1777. doi: 10.1002/mma.1491. Google Scholar

[30]

N. Yamaguchi, Existence of global strong solution to the micropolar fluid systemin a bounded domain, Math. Methods Appl. Sci., 28 (2005), 1507-1526. doi: 10.1002/mma.617. Google Scholar

[31]

B. Q. Yuan, On the regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space, Proc. Amer. Math. Soc., 138 (2010), 2025-2036. doi: 10.1090/S0002-9939-10-10232-9. Google Scholar

[32]

J. W. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742. doi: 10.1016/j.jde.2015.03.011. Google Scholar

[33]

P. X. ZhangC. Zhao and J. W. Zhang, Global regularity of the three-dimensional equations for nonhomogeneous incompressible fluids, Nonlinear Anal., 110 (2014), 61-76. doi: 10.1016/j.na.2014.07.014. Google Scholar

[34]

P. X. Zhang and M. X. Zhu, Global regularity of 3D nonhomogeneous incompressible micropolar fluids, Acta Appl. Math., 161 (2019), 13–34, https://doi.org/10.1007/s10440-018-0202-1. doi: 10.1007/s10440-018-0202-1. Google Scholar

[1]

Zefu Feng, Changjiang Zhu. Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3069-3097. doi: 10.3934/dcds.2019127

[2]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[3]

Jishan Fan, Shuxiang Huang, Fucai Li. Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinetic & Related Models, 2017, 10 (4) : 1035-1053. doi: 10.3934/krm.2017041

[4]

Bo-Qing Dong, Jiahong Wu, Xiaojing Xu, Zhuan Ye. Global regularity for the 2D micropolar equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4133-4162. doi: 10.3934/dcds.2018180

[5]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[6]

Jishan Fan, Fucai Li, Gen Nakamura. Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1481-1490. doi: 10.3934/cpaa.2014.13.1481

[7]

Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439

[8]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[9]

Tong Tang, Yongfu Wang. Strong solutions to compressible barotropic viscoelastic flow with vacuum. Kinetic & Related Models, 2015, 8 (4) : 765-775. doi: 10.3934/krm.2015.8.765

[10]

Jianqing Chen, Boling Guo. Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 357-367. doi: 10.3934/dcdsb.2007.8.357

[11]

Fei Chen, Boling Guo, Xiaoping Zhai. Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density. Kinetic & Related Models, 2019, 12 (1) : 37-58. doi: 10.3934/krm.2019002

[12]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[13]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[14]

Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292

[15]

Honglv Ma, Jin Zhang, Chengkui Zhong. Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4721-4737. doi: 10.3934/dcdsb.2019027

[16]

Ming He, Jianwen Zhang. Global cylindrical solution to the compressible MHD equations in an exterior domain. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1841-1865. doi: 10.3934/cpaa.2009.8.1841

[17]

Cung The Anh, Vu Manh Toi. Local exact controllability to trajectories of the magneto-micropolar fluid equations. Evolution Equations & Control Theory, 2017, 6 (3) : 357-379. doi: 10.3934/eect.2017019

[18]

Yachun Li, Shengguo Zhu. Existence results for compressible radiation hydrodynamic equations with vacuum. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1023-1052. doi: 10.3934/cpaa.2015.14.1023

[19]

Sergiu Klainerman, Igor Rodnianski. On emerging scarred surfaces for the Einstein vacuum equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1007-1031. doi: 10.3934/dcds.2010.28.1007

[20]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

2018 Impact Factor: 1.008

Article outline

[Back to Top]