• Previous Article
    Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems
  • DCDS-B Home
  • This Issue
  • Next Article
    Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment
doi: 10.3934/dcdsb.2019160

Continuity for the rotation-two-component Camassa-Holm system

1. 

School of Public Affairs, Chongqing University, Chongqing 400044, China

2. 

Department of Mathematics, Southwestern University of Finance and Economics, Sichuan 611130, China

3. 

College of Mathematics Science, Chongqing Normal University, Chongqing 401331, China

4. 

College of Mathematics and statistics, Chongqing University, Chongqing 401331, China

* Corresponding author: Shouming Zhou and Rong Zeng

Received  May 2018 Revised  November 2018 Published  July 2019

Fund Project: This work is supported by the National Science Fund of China (Grant No. 11771063), Science and Technology Research Program of Chongqing Municipal Educational Committee (Grant No. KJ16003162016 and KJZD-M 201800501), Natural Science Foundation of Chongqing (Grant No. cstc2016jcyjA0116). The work of Mu is supported in part by NSFC under grants 11771062, the Basic and Advanced Research Project of CQC-STC under grant cstc2015jcyjBX0007 and the Fundamental Research Funds for the Central Universities under grant 106112016CDJXZ238826

This paper focuses on the Cauchy problem of the rotation-two-component Camassa-Holm(R2CH) system, which is a model of equatorial water waves that includes the effect of the Coriolis force. It has been shown that the R2CH system is well-posed in Sobolev spaces $ H^s(\mathbb{R})\times H^{s-1}(\mathbb{R}) $ with $ s>3/2 $. Using the method of approximate solutions in conjunction with well-posedness estimates, we further proved that the dependence on initial data is sharp, i.e., the data-to-solution map is continuous but not uniformly continuous. Moreover, we obtain that the solution map for the R2CH system is Hölder continuous in $ H^\theta(\mathbb{R})\times H^{\theta-1}(\mathbb{R}) $-topology for all $ 0\leq\theta<s $ with exponent $ \gamma $ depending on $ s $ and $ \theta $. The Coriolis term and higher nonlinear term in the R2CH system bring challenges to construct the counter-approximate solutions.

Citation: Chenghua Wang, Rong Zeng, Shouming Zhou, Bin Wang, Chunlai Mu. Continuity for the rotation-two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019160
References:
[1]

A. Boutet de MonvelA. KostenkoD. Shepelsky and G. Teschl, Long-time asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal., 41 (2009), 1559-1588. doi: 10.1137/090748500. Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z. Google Scholar

[3]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Letters, 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[4]

R. CamassaD. D. Holm and J. M. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33. doi: 10.1016/S0065-2156(08)70254-0. Google Scholar

[5]

R. M. ChenL. FanH. J. Gao and Y. Liu, Breaking waves and solitary waves to the rotation-two-component Camassa-Holm system, SIAM J. Math. Anal., 49 (2017), 3573-3602. doi: 10.1137/16M1073005. Google Scholar

[6]

R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa-Holm system, Int. Math. Res. Not., 2011 (2011), 1381-1416. doi: 10.1093/imrn/rnq118. Google Scholar

[7]

R. Chen and S. M. Zhou, Well-posedness and persistence properties for two-component higher order Camassa-Holm systems with fractional inertia operator, Nonlinear Anal. Real World Appl., 33 (2017), 121-138. doi: 10.1016/j.nonrwa.2016.06.003. Google Scholar

[8]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363. doi: 10.1006/jfan.1997.3231. Google Scholar

[9]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London A, 457 (2001), 953-970. doi: 10.1098/rspa.2000.0701. Google Scholar

[10]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5. Google Scholar

[11]

A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307. doi: 10.1093/imamat/hxs033. Google Scholar

[12]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243. doi: 10.1007/BF02392586. Google Scholar

[13]

A. ConstantinV. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207. doi: 10.1088/0266-5611/22/6/017. Google Scholar

[14]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050. Google Scholar

[15]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. Google Scholar

[16]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear. Sci., 12 (2002), 415-422. doi: 10.1007/s00332-002-0517-x. Google Scholar

[17]

A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. Google Scholar

[18]

J. Eckhardt, The inverse spectral transform for the conservative Camassa-Holm flow with decaying initial data, Arch. Ration. Mech. Anal., 224 (2017), 21-52. doi: 10.1007/s00205-016-1066-z. Google Scholar

[19]

J. EscherD. HenryB. Kolev and T. Lyons, Two-component equations modelling water waves with constant vorticity, Ann. Mat. Pura Appl., 195 (2016), 249-271. doi: 10.1007/s10231-014-0461-z. Google Scholar

[20]

J. EscherM. Kohlmann and J. Lenells, The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations, J. Geometry and Physics, 61 (2011), 436-452. doi: 10.1016/j.geomphys.2010.10.011. Google Scholar

[21]

J. Escher and T. Lyons, Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach, J. Geom. Mech., 7 (2015), 281-293. doi: 10.3934/jgm.2015.7.281. Google Scholar

[22]

L. FanH. J. Gao and Y. Liu, On the rotation-two-component Camassa-Holm system modelling the equatorial water waves, Adv. Math., 291 (2016), 59-89. doi: 10.1016/j.aim.2015.11.049. Google Scholar

[23]

Q. H. FengF. W. Meng and B. Zheng, Gronwall-Bellman type nonlinear delay integral inequalities on times scales, J. Math. Anal. Appl., 382 (2011), 772-784. doi: 10.1016/j.jmaa.2011.04.077. Google Scholar

[24]

A. S. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D, 4 (1981), 47-66. doi: 10.1016/0167-2789(81)90004-X. Google Scholar

[25]

X. M. HeA. X. Qian and W. M. Zou, Existence and concentration of positive solutions for quasi-linear Schrodinger equations with critical growth, Nonlinearity, 26 (2013), 3137-3168. doi: 10.1088/0951-7715/26/12/3137. Google Scholar

[26]

A. A. Himonas and J. Holliman, Hölder continuity of the solution map for the Novikov equation, J. Math. Phys., 54 (2013), 061501, 11 pp. doi: 10.1063/1.4807729. Google Scholar

[27]

A. A. Himonas and C. Kenig, Non-uniform dependence on initial data for the CH equation on the line, Diff. Integr. Equ., 22 (2009), 201-224. Google Scholar

[28]

A. A. Himonas and D. Mantzavinos, Hölder continuity for the Fokas-Olver-Rosenau-Qiao equation, J. Nonlinear Sci., 24 (2014), 1105-1124. doi: 10.1007/s00332-014-9212-y. Google Scholar

[29]

R. Ivanov, Two-component integrable systems modelling shallow water waves: the constant vorticity case, Wave Motion, 46 (2009), 389-396. doi: 10.1016/j.wavemoti.2009.06.012. Google Scholar

[30]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704. Google Scholar

[31]

G. Y. Lv and M. X. Wang, Non-uniform dependence for a modified Camassa-Holm system, J. Math. Phy., 53 (2012), 013101, 21 pp. doi: 10.1063/1.3675900. Google Scholar

[32]

B. Moon, On the Wave-breaking phenomena and global existence for the periodic rotation-two-component Camassa-Holm system, J. Math. Anal. Appl., 451 (2017), 84-101. doi: 10.1016/j.jmaa.2017.01.075. Google Scholar

[33]

P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906. doi: 10.1103/PhysRevE.53.1900. Google Scholar

[34]

Z. Popowicz, A two-component generalization of the Degasperis-Procesi equation, J. Phys. A, 39 (2006), 13717-13726. doi: 10.1088/0305-4470/39/44/007. Google Scholar

[35]

M. Taylor, Commutator estimates, Proc. Amer. Math. Soc., 131 (2003), 1501-1507. doi: 10.1090/S0002-9939-02-06723-0. Google Scholar

[36]

P. Wang, The concavity of the Gaussian curvature of the convex level sets of minimal surfaces with respect to the height, Pacific J. Math., 267 (2014), 489-509. doi: 10.2140/pjm.2014.267.489. Google Scholar

[37]

P. H. Wang and L. L. Zhao, Some geometrical properties of convex level sets of minimal graph on 2-dimensional Riemannian manifolds, Nonlinear Anal., 130 (2016), 1-17. doi: 10.1016/j.na.2015.09.021. Google Scholar

[38]

P. H. Wang and D. K. Zhang, Convexity of level sets of minimal graph on space form with nonnegative curvature, J. Differential Equations, 262 (2017), 5534-5564. doi: 10.1016/j.jde.2017.02.010. Google Scholar

[39]

S. D. YangZ.-A. Yao and C.-A. Zhao, The weight distributions of two classes of $p$-ary cyclic codes with few weights, Finite Fields and Their Applications, 44 (2017), 76-91. doi: 10.1016/j.ffa.2016.11.004. Google Scholar

[40]

S. D. Yang and Z.-A. Yao, Complete weight enumerators of a class of linear codes, Discrete Mathematics, 340 (2017), 729-739. doi: 10.1016/j.disc.2016.11.029. Google Scholar

[41]

S. M. Zhou, The local well-posedness in Besov spaces and non-uniform dependence on initial data for the interacting system of Camassa-Holm and Degasperis-Procesi equations, Monatsh. Math., 187 (2018), 735-764. doi: 10.1007/s00605-017-1110-6. Google Scholar

[42]

S. M. ZhouZ. J. QiaoC. L. Mu and L. Wei, Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude, J. Differential Equations, 263 (2017), 910-933. doi: 10.1016/j.jde.2017.03.002. Google Scholar

show all references

References:
[1]

A. Boutet de MonvelA. KostenkoD. Shepelsky and G. Teschl, Long-time asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal., 41 (2009), 1559-1588. doi: 10.1137/090748500. Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z. Google Scholar

[3]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Letters, 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[4]

R. CamassaD. D. Holm and J. M. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33. doi: 10.1016/S0065-2156(08)70254-0. Google Scholar

[5]

R. M. ChenL. FanH. J. Gao and Y. Liu, Breaking waves and solitary waves to the rotation-two-component Camassa-Holm system, SIAM J. Math. Anal., 49 (2017), 3573-3602. doi: 10.1137/16M1073005. Google Scholar

[6]

R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa-Holm system, Int. Math. Res. Not., 2011 (2011), 1381-1416. doi: 10.1093/imrn/rnq118. Google Scholar

[7]

R. Chen and S. M. Zhou, Well-posedness and persistence properties for two-component higher order Camassa-Holm systems with fractional inertia operator, Nonlinear Anal. Real World Appl., 33 (2017), 121-138. doi: 10.1016/j.nonrwa.2016.06.003. Google Scholar

[8]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363. doi: 10.1006/jfan.1997.3231. Google Scholar

[9]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London A, 457 (2001), 953-970. doi: 10.1098/rspa.2000.0701. Google Scholar

[10]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5. Google Scholar

[11]

A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307. doi: 10.1093/imamat/hxs033. Google Scholar

[12]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243. doi: 10.1007/BF02392586. Google Scholar

[13]

A. ConstantinV. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207. doi: 10.1088/0266-5611/22/6/017. Google Scholar

[14]

A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050. Google Scholar

[15]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. Google Scholar

[16]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear. Sci., 12 (2002), 415-422. doi: 10.1007/s00332-002-0517-x. Google Scholar

[17]

A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. Google Scholar

[18]

J. Eckhardt, The inverse spectral transform for the conservative Camassa-Holm flow with decaying initial data, Arch. Ration. Mech. Anal., 224 (2017), 21-52. doi: 10.1007/s00205-016-1066-z. Google Scholar

[19]

J. EscherD. HenryB. Kolev and T. Lyons, Two-component equations modelling water waves with constant vorticity, Ann. Mat. Pura Appl., 195 (2016), 249-271. doi: 10.1007/s10231-014-0461-z. Google Scholar

[20]

J. EscherM. Kohlmann and J. Lenells, The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations, J. Geometry and Physics, 61 (2011), 436-452. doi: 10.1016/j.geomphys.2010.10.011. Google Scholar

[21]

J. Escher and T. Lyons, Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach, J. Geom. Mech., 7 (2015), 281-293. doi: 10.3934/jgm.2015.7.281. Google Scholar

[22]

L. FanH. J. Gao and Y. Liu, On the rotation-two-component Camassa-Holm system modelling the equatorial water waves, Adv. Math., 291 (2016), 59-89. doi: 10.1016/j.aim.2015.11.049. Google Scholar

[23]

Q. H. FengF. W. Meng and B. Zheng, Gronwall-Bellman type nonlinear delay integral inequalities on times scales, J. Math. Anal. Appl., 382 (2011), 772-784. doi: 10.1016/j.jmaa.2011.04.077. Google Scholar

[24]

A. S. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D, 4 (1981), 47-66. doi: 10.1016/0167-2789(81)90004-X. Google Scholar

[25]

X. M. HeA. X. Qian and W. M. Zou, Existence and concentration of positive solutions for quasi-linear Schrodinger equations with critical growth, Nonlinearity, 26 (2013), 3137-3168. doi: 10.1088/0951-7715/26/12/3137. Google Scholar

[26]

A. A. Himonas and J. Holliman, Hölder continuity of the solution map for the Novikov equation, J. Math. Phys., 54 (2013), 061501, 11 pp. doi: 10.1063/1.4807729. Google Scholar

[27]

A. A. Himonas and C. Kenig, Non-uniform dependence on initial data for the CH equation on the line, Diff. Integr. Equ., 22 (2009), 201-224. Google Scholar

[28]

A. A. Himonas and D. Mantzavinos, Hölder continuity for the Fokas-Olver-Rosenau-Qiao equation, J. Nonlinear Sci., 24 (2014), 1105-1124. doi: 10.1007/s00332-014-9212-y. Google Scholar

[29]

R. Ivanov, Two-component integrable systems modelling shallow water waves: the constant vorticity case, Wave Motion, 46 (2009), 389-396. doi: 10.1016/j.wavemoti.2009.06.012. Google Scholar

[30]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704. Google Scholar

[31]

G. Y. Lv and M. X. Wang, Non-uniform dependence for a modified Camassa-Holm system, J. Math. Phy., 53 (2012), 013101, 21 pp. doi: 10.1063/1.3675900. Google Scholar

[32]

B. Moon, On the Wave-breaking phenomena and global existence for the periodic rotation-two-component Camassa-Holm system, J. Math. Anal. Appl., 451 (2017), 84-101. doi: 10.1016/j.jmaa.2017.01.075. Google Scholar

[33]

P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906. doi: 10.1103/PhysRevE.53.1900. Google Scholar

[34]

Z. Popowicz, A two-component generalization of the Degasperis-Procesi equation, J. Phys. A, 39 (2006), 13717-13726. doi: 10.1088/0305-4470/39/44/007. Google Scholar

[35]

M. Taylor, Commutator estimates, Proc. Amer. Math. Soc., 131 (2003), 1501-1507. doi: 10.1090/S0002-9939-02-06723-0. Google Scholar

[36]

P. Wang, The concavity of the Gaussian curvature of the convex level sets of minimal surfaces with respect to the height, Pacific J. Math., 267 (2014), 489-509. doi: 10.2140/pjm.2014.267.489. Google Scholar

[37]

P. H. Wang and L. L. Zhao, Some geometrical properties of convex level sets of minimal graph on 2-dimensional Riemannian manifolds, Nonlinear Anal., 130 (2016), 1-17. doi: 10.1016/j.na.2015.09.021. Google Scholar

[38]

P. H. Wang and D. K. Zhang, Convexity of level sets of minimal graph on space form with nonnegative curvature, J. Differential Equations, 262 (2017), 5534-5564. doi: 10.1016/j.jde.2017.02.010. Google Scholar

[39]

S. D. YangZ.-A. Yao and C.-A. Zhao, The weight distributions of two classes of $p$-ary cyclic codes with few weights, Finite Fields and Their Applications, 44 (2017), 76-91. doi: 10.1016/j.ffa.2016.11.004. Google Scholar

[40]

S. D. Yang and Z.-A. Yao, Complete weight enumerators of a class of linear codes, Discrete Mathematics, 340 (2017), 729-739. doi: 10.1016/j.disc.2016.11.029. Google Scholar

[41]

S. M. Zhou, The local well-posedness in Besov spaces and non-uniform dependence on initial data for the interacting system of Camassa-Holm and Degasperis-Procesi equations, Monatsh. Math., 187 (2018), 735-764. doi: 10.1007/s00605-017-1110-6. Google Scholar

[42]

S. M. ZhouZ. J. QiaoC. L. Mu and L. Wei, Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude, J. Differential Equations, 263 (2017), 910-933. doi: 10.1016/j.jde.2017.03.002. Google Scholar

[1]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[2]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[3]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[4]

Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699

[5]

Zeng Zhang, Zhaoyang Yin. Global existence for a two-component Camassa-Holm system with an arbitrary smooth function. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5523-5536. doi: 10.3934/dcds.2018243

[6]

David Henry. Infinite propagation speed for a two component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 597-606. doi: 10.3934/dcdsb.2009.12.597

[7]

Zeng Zhang, Zhaoyang Yin. On the Cauchy problem for a four-component Camassa-Holm type system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5153-5169. doi: 10.3934/dcds.2015.35.5153

[8]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[9]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[10]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[11]

Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281

[12]

Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic & Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305

[13]

Ying Zhang. Wave breaking and global existence for the periodic rotation-Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2243-2257. doi: 10.3934/dcds.2017097

[14]

H. A. Erbay, S. Erbay, A. Erkip. On the decoupling of the improved Boussinesq equation into two uncoupled Camassa-Holm equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3111-3122. doi: 10.3934/dcds.2017133

[15]

Guangying Lv, Mingxin Wang. Some remarks for a modified periodic Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1161-1180. doi: 10.3934/dcds.2011.30.1161

[16]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[17]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[18]

Yong Chen, Hongjun Gao, Yue Liu. On the Cauchy problem for the two-component Dullin-Gottwald-Holm system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3407-3441. doi: 10.3934/dcds.2013.33.3407

[19]

Delia Ionescu-Kruse. Variational derivation of the Camassa-Holm shallow water equation with non-zero vorticity. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 531-543. doi: 10.3934/dcds.2007.19.531

[20]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (14)
  • HTML views (77)
  • Cited by (0)

[Back to Top]