# American Institute of Mathematical Sciences

November  2019, 24(11): 6279-6295. doi: 10.3934/dcdsb.2019139

## Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes

 1 School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000 2 China, College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China 3 School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

* Corresponding author: Yuyue Zhang and Jicai Huang. The second author is supported by NSFC (No.11471133, No.11871235)

Received  August 2018 Revised  January 2019 Published  July 2019

Fund Project: The first author is supported by NSFC (No.11871415, No.11371305, No.11671346) and Nanhu Scholars Program for Young Scholars XYNU

To reduce or eradicate mosquito-borne diseases, one of effective methods is to control the wild mosquito populations by using the sterile insect technique. Dynamical models with different releasing strategies of sterile mosquitoes have been proposed and investigated in the recent work by Cai et al. [SIAM. J. Appl. Math. 75(2014)], where some basic analysis on the dynamics are given and some complicated dynamical behaviors are found by numerical simulations. While their findings seem exciting and promising, yet the models could exhibit much more complex dynamics than it has been observed. In this paper, to further study the impact of the sterile insect technique on controlling the wild mosquito populations, we systematically study bifurcations and dynamics of the model with a proportional release rate of sterile mosquitoes by bifurcation method. We show that the model undergoes saddle-node bifurcation, subcritical and supercritical Hopf bifurcations, and Bogdanov-Takens bifurcation as the values of parameters vary. Some numerical simulations, including the bifurcation diagram and phase portraits, are also presented to illustrate the theoretical conclusions. These rich and complicated bifurcation phenomena can be regarded as a complement to the work by Cai et al. [SIAM. J. Appl. Math. 75(2014)].

Citation: Liming Cai, Jicai Huang, Xinyu Song, Yuyue Zhang. Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6279-6295. doi: 10.3934/dcdsb.2019139
##### References:

show all references

##### References:
The phase portraits of system (1) with $a = 1, \mu _{1} = \frac{37}{312}, \xi _{1} = \frac{41}{312}, \mu _{2} = \frac{703}{6240}, \xi _{2} = \frac{19}{3120}$. (a) No positive equilibrium when $b = \frac{49}{400}$; (b) A cusp when $b = \frac{19}{160}$; (c) Two positive equilibria when $b = \frac{9}{80}$, $E_1^*$ is a saddle, $E_2^*$ is a stable focus
(a) An unstable limit cycle created by the subcritical Hopf bifurcation; (b) A stable limit cycle created by the supercritical Hopf bifurcation
The bifurcation diagram and phase portraits of system (23) with $b = \frac{95}{800}$. (a) Bifurcation diagram; (b) No equilibria when $(\lambda_1, \lambda_2) = (0.01, -0.008)$ lies in the region Ⅰ; (c) An unstable focus when $(\lambda_1, \lambda_2) = (0.01, -0.011)$ lies in the region Ⅱ; (d) An unstable limit cycle when $(\lambda_1, \lambda_2) = (0.01, -0.012)$ lies in the region Ⅲ; (e) An unstable homoclinic loop when $(\lambda_1, \lambda_2) = (0.01, -0.01253)$ lies on the curve HL; (f) A stable focus when $(\lambda_1, \lambda_2) = (0.01, -0.013)$ lies in the region Ⅳ
 [1] Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419 [2] Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923 [3] Majid Gazor, Mojtaba Moazeni. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 205-224. doi: 10.3934/dcds.2015.35.205 [4] Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203 [5] Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041 [6] Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233 [7] Ale Jan Homburg, Todd Young. Intermittency and Jakobson's theorem near saddle-node bifurcations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 21-58. doi: 10.3934/dcds.2007.17.21 [8] Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069 [9] Qiuyan Zhang, Lingling Liu, Weinian Zhang. Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1499-1514. doi: 10.3934/mbe.2017078 [10] Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062 [11] Hebai Chen, Xingwu Chen. Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (Ⅱ). Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4141-4170. doi: 10.3934/dcdsb.2018130 [12] W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351 [13] Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215 [14] Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 [15] Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 [16] John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 [17] Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 [18] Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71 [19] R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure & Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147 [20] Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197

2018 Impact Factor: 1.008

## Tools

Article outline

Figures and Tables