# American Institute of Mathematical Sciences

• Previous Article
Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems
• DCDS-B Home
• This Issue
• Next Article
Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term
November  2019, 24(11): 6053-6069. doi: 10.3934/dcdsb.2019130

## Coexisting hidden attractors in a 5D segmented disc dynamo with three types of equilibria

 1 School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510641, China 2 Guangxi Colleges and Universities Key Laboratory, of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin 537000, China 3 School of Electronic and Information Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China

* Corresponding author: Jianghong Bao

Received  September 2017 Revised  April 2018 Published  July 2019

Little seems to be known about coexisting hidden attractors in hyperchaotic systems with three types of equilibria. Based on the segmented disc dynamo, this paper proposes a new 5D hyperchaotic system which possesses the properties. This new system can generate hidden hyperchaos and chaos when initial conditions vary, as well as self-excited chaotic and hyperchaotic attractors when parameters vary. Furthermore, the paper proves that the Hopf bifurcation and pitchfork bifurcation occur in the system. Numerical simulations demonstrate the emergence of the two bifurcations. The MATLAB simulation results are further confirmed and validated by circuit implementation using NI Multisim.

Citation: Jianghong Bao, Dandan Chen, Yongjian Liu, Hongbo Deng. Coexisting hidden attractors in a 5D segmented disc dynamo with three types of equilibria. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6053-6069. doi: 10.3934/dcdsb.2019130
##### References:

show all references

##### References:
For parameters $\left( {m, g, {k_1}, {k_2}, {k_3}, {k_4}, {k_5}, {k_6}} \right)$ = (0.02, 12, 0, 11.9, 0.01, 0, $-0.01$, $-99$) and initial condition (0, 0, 0, 0, 0), the finite-time local Lyapunov exponents spectrum in system (2.2) versus $r \in (0, 3]$
Parameters $\left( {m, r, g, {k_1}, {k_2}, {k_3}, {k_4}, {k_5}, {k_6}} \right)$ = (0.02, 0.02, 12, 0, 12.3, 0.0001, 0.01, 0.01, $-100$) and initial condition (0.8147, 0.9058, 0.1270, 0.9134, 0.6324); (a) chaotic attractor of system(2.2); (b) Poincaré map on the $x$-$z$ plane; (c) time series of $x$; (d) finite-time local Lyapunov dimension
Chaotic attractor of system (2.2) for initial condition (21, 0.1, 1, 0, 0) and parameters $\left( {m, r, g, {k_1}, {k_2}, {k_3}, {k_4}, {k_5}, {k_6}} \right)$ = (1.1, 6.1, 12, 0, 12, 0, 0, 0, $-100$)
Initial condition (0, $-10$, 1, $-100$, $-10$) and parameters $\left( {m, r, g, {k_1}, {k_2}, {k_3}, {k_4}, {k_5}, {k_6}} \right)$ = (0.01, 0.02, 12, 0, 13, 0, 0, 0.1, $-100$); (a) chaotic attractor of system (2.2); (b) Poincaré map on the $x$-$y$ plane
Hyperchaotic attractor of system (2.2) for parameters $\left( {m, r, g, {k_1}, {k_2}, {k_3}, {k_4}, {k_5}, {k_6}} \right)$ = (0.02, 0.02, 12, 0, 12, 0.001, 0.01, 0.01, $-100$) and initial condition (0.5268, 7.3786, 2.6912, 4.2284, 0.8147)
Parameters $\left( {m, r, g, {k_1}, {k_2}, {k_3}, {k_4}, {k_5}, {k_6}} \right)$ = (0.02, 0.02, 12, 0, 12, 0.001, 0.01, 0.01, $-100$) and initial condition $(0, -1000,100, -10, 0)$; (a) chaotic attractor of system (2.2); (b) Poincaré map on the $y$-$z$ plane
Parameters $\left( {m, r, g, {k_1}, {k_2}, {k_3}, {k_4}, {k_5}, {k_6}} \right)$ = (0.02, 0.02, 12, 0, 12, 0.001, 0.01, 0.01, -100) and initial condition $(0.5, 0.5, 0.5, 0.5, 0.5)$; (a) trajectory for $t \in [0, 10000 ]$; (b) trajectory for $t \in [0, 20000 ]$; (c) time series of $x$; (d) finite-time local Lyapunov dimension
Initial condition $(0.0026, -0.3011, 0.2967, 0, -0.7291)$ and $\left({m, r, g, {k_1}, {k_3}, {k_4}, {k_5}, {k_6}} \right)$ = (1.3, 0.1, 0.1, 0, 0.1, 0, 0.1, $-2$), a stable limit cycle of system (2.2) for ${k_2}$ = 0.0614
Pitchfork bifurcation diagram in system (2.2) near ${k_6} = 0$
Circuit diagram for system (2.2)
Hyperchaotic attractor of system (2.2) obtained using NI Multisim circuit implementation for $\left( {m, r, g, {k_1}, {k_2}, {k_3}, {k_4}, {k_5}, {k_6}} \right)$ = (0.02, 0.02, 12, 0, 12, 0.001, 0.01, 0.01, $-100$)
2D projections of hyperchaotic attractor of system (2.2) with parameters $\left( {m, r, g, {k_1}, {k_2}, {k_3}, {k_4}, {k_5}, {k_6}} \right)$ = (0.02, 0.02, 12, 0, 12, 0.001, 0.01, 0.01, $-100$) and initial condition (0.5268, 7.3786, 2.6912, 4.2284, 0.8147)
 [1] Jianghong Bao. Complex dynamics in the segmented disc dynamo. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3301-3314. doi: 10.3934/dcdsb.2016098 [2] Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026 [3] Nemanja Kosovalić, Brian Pigott. Self-excited vibrations for damped and delayed higher dimensional wave equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2413-2435. doi: 10.3934/dcds.2019102 [4] Qi An, Weihua Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 487-510. doi: 10.3934/dcdsb.2018183 [5] Shengfu Deng. Generalized pitchfork bifurcation on a two-dimensional gaseous star with self-gravity and surface tension. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3419-3435. doi: 10.3934/dcds.2014.34.3419 [6] Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 [7] Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 [8] John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 [9] Klaus Reiner Schenk-Hoppé. Random attractors--general properties, existence and applications to stochastic bifurcation theory. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 99-130. doi: 10.3934/dcds.1998.4.99 [10] Paul Georgescu, Hong Zhang, Daniel Maxin. The global stability of coexisting equilibria for three models of mutualism. Mathematical Biosciences & Engineering, 2016, 13 (1) : 101-118. doi: 10.3934/mbe.2016.13.101 [11] Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 [12] Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71 [13] R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure & Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147 [14] Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197 [15] Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247 [16] Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098 [17] Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325 [18] Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735 [19] Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121 [20] Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523

2018 Impact Factor: 1.008

## Tools

Article outline

Figures and Tables