• Previous Article
    Asymptotic behavior of gene expression with complete memory and two-time scales based on the chemical Langevin equations
  • DCDS-B Home
  • This Issue
  • Next Article
    On the eventual stability of asymptotically autonomous systems with constraints
August  2019, 24(8): 4445-4455. doi: 10.3934/dcdsb.2019126

Some monotone properties for solutions to a reaction-diffusion model

1. 

Institute for Mathematical Sciences, Renmin University of China, Beijing, 100876, China

2. 

Department of Mathematics, Ohio State University, Columbus, OH 43210, USA

* Corresponding author: Rui Li

Received  August 2018 Revised  November 2018 Published  June 2019

Motivated by the recent investigation of a predator-prey model in heterogeneous environments [20], we show that the maximum of the unique positive solution of the scalar equation
$ \begin{equation} \begin{cases} \mu\Delta\theta+(m(x)-\theta)\theta = 0 \quad &\text{in} \quad \Omega,\\ \frac{\partial \theta}{\partial n} = 0 \quad &\text{on} \quad \partial\Omega \end{cases} \end{equation} $
is a strictly monotone decreasing function of the diffusion rate
$ \mu $
for several classes of function
$ m $
, which substantially improves a result in [20]. However, the minimum of the positive solution of (1) is not always monotone increasing in the diffusion rate [15].
Citation: Rui Li, Yuan Lou. Some monotone properties for solutions to a reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4445-4455. doi: 10.3934/dcdsb.2019126
References:
[1]

I. Averill, K.-Y. Lam and Y. Lou, The role of advection in a two-species competition model: A bifurcation approach, Mem. Amer. Math. Soc., 245 (2017), v+117pp. doi: 10.1090/memo/1161. Google Scholar

[2]

X. L. Bai, X. Q. He and F. Li, An optimization problem and its application in population dynamics, Proc. Amer. Math. Soc., 144 (2016), 2161–2170. doi: 10.1090/proc/12873. Google Scholar

[3]

R. G. Casten and C. J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations, 27 (1978), 266-273. doi: 10.1016/0022-0396(78)90033-5. Google Scholar

[4]

R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in a disrupted environments, Proc. Roy. Soc. Edinburgh, 112A (1989), 293–318. doi: 10.1017/S030821050001876X. Google Scholar

[5]

R. S. Cantrell and C. Cosner, The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315–338. doi: 10.1007/BF00167155. Google Scholar

[6]

R. S. Cantrell and C. Cosner, Should a park be an island?, SIAM J. Appl. Math., 53 (1993), 219–252. doi: 10.1137/0153014. Google Scholar

[7]

R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103–145. doi: 10.1007/s002850050122. Google Scholar

[8]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296. Google Scholar

[9]

D. DeAngelis, W.-M. Ni and B. Zhang, Dispersal and spatial heterogeneity: Single species, J. Math. Biol., 72 (2016), 239–254. doi: 10.1007/s00285-015-0879-y. Google Scholar

[10]

J. Y. He, Stability of Semi-Trivial Solutions for a Predator-Prey Model in Heterogeneous Environment, M.S. Thesis (in Chinese), East China Normal University, April 2018.Google Scholar

[11]

X. Q. He, K.-Y. Lam, Y. Lou and W.-M. Ni, Dynamics of a consumer-resource reaction-diffusion model: Homogeneous vs. heterogenous environments, J. Math. Biol., 2019, 1–32. doi: 10.1007/s00285-018-1321-z. Google Scholar

[12]

X. Q. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: Heterogeneity vs. homogeneity, J. Differential Equations, 254 (2013), 528–546. doi: 10.1016/j.jde.2012.08.032. Google Scholar

[13]

X.Q. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system II: The general case, J. Differential Equations, 254 (2013), 4088–4108. doi: 10.1016/j.jde.2013.02.009. Google Scholar

[14]

X. Q. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity I, Comm. Pure. Appl. Math., 69 (2016), 981–1014. doi: 10.1002/cpa.21596. Google Scholar

[15]

X. Q. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, II, Calc. Var. Partial Differential Equations, 55 (2016), Art. 25, 20 pp. doi: 10.1007/s00526-016-0964-0. Google Scholar

[16]

S. Liang and Y. Lou, On the dependence of population size upon random dispersal rate, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2771-2788. doi: 10.3934/dcdsb.2012.17.2771. Google Scholar

[17]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426. doi: 10.1016/j.jde.2005.05.010. Google Scholar

[18]

Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, Tutorials in Mathematical Biosciences. IV, 171–205, Lecture Notes in Math., 1922, Math. Biosci. Subser., Springer, Berlin, 2008. doi: 10.1007/978-3-540-74331-6_5. Google Scholar

[19]

Y. Lou, Some reaction diffusion models in spatial ecology, Scientia Sinica Mathematica, 45 (2015), 1619-1634. Google Scholar

[20]

Y. Lou and B. Wang, Local dynamics of a diffusive predator-prey model in spatially heterogeneous environment, J. Fixed Point Theory Appl., 19 (2017), 755-772. doi: 10.1007/s11784-016-0372-2. Google Scholar

[21]

W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conf. Ser. in Appl. Math. 82, SIAM, Philadelphia, 2011. doi: 10.1137/1.9781611971972. Google Scholar

[22]

K. Nagahara and E. Yanagida, Maximization of the total population in a reaction-diffusion model with logistic growth, Calc. Var. Partial Differential Equations, 57 (2018), Art. 80, 14 pp. doi: 10.1007/s00526-018-1353-7. Google Scholar

[23]

H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454. doi: 10.2977/prims/1195188180. Google Scholar

[24]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, 2nd ed., Springer-Verlag, Berlin, 1984. doi: 10.1007/978-1-4612-5282-5. Google Scholar

show all references

References:
[1]

I. Averill, K.-Y. Lam and Y. Lou, The role of advection in a two-species competition model: A bifurcation approach, Mem. Amer. Math. Soc., 245 (2017), v+117pp. doi: 10.1090/memo/1161. Google Scholar

[2]

X. L. Bai, X. Q. He and F. Li, An optimization problem and its application in population dynamics, Proc. Amer. Math. Soc., 144 (2016), 2161–2170. doi: 10.1090/proc/12873. Google Scholar

[3]

R. G. Casten and C. J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations, 27 (1978), 266-273. doi: 10.1016/0022-0396(78)90033-5. Google Scholar

[4]

R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in a disrupted environments, Proc. Roy. Soc. Edinburgh, 112A (1989), 293–318. doi: 10.1017/S030821050001876X. Google Scholar

[5]

R. S. Cantrell and C. Cosner, The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315–338. doi: 10.1007/BF00167155. Google Scholar

[6]

R. S. Cantrell and C. Cosner, Should a park be an island?, SIAM J. Appl. Math., 53 (1993), 219–252. doi: 10.1137/0153014. Google Scholar

[7]

R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103–145. doi: 10.1007/s002850050122. Google Scholar

[8]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296. Google Scholar

[9]

D. DeAngelis, W.-M. Ni and B. Zhang, Dispersal and spatial heterogeneity: Single species, J. Math. Biol., 72 (2016), 239–254. doi: 10.1007/s00285-015-0879-y. Google Scholar

[10]

J. Y. He, Stability of Semi-Trivial Solutions for a Predator-Prey Model in Heterogeneous Environment, M.S. Thesis (in Chinese), East China Normal University, April 2018.Google Scholar

[11]

X. Q. He, K.-Y. Lam, Y. Lou and W.-M. Ni, Dynamics of a consumer-resource reaction-diffusion model: Homogeneous vs. heterogenous environments, J. Math. Biol., 2019, 1–32. doi: 10.1007/s00285-018-1321-z. Google Scholar

[12]

X. Q. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: Heterogeneity vs. homogeneity, J. Differential Equations, 254 (2013), 528–546. doi: 10.1016/j.jde.2012.08.032. Google Scholar

[13]

X.Q. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system II: The general case, J. Differential Equations, 254 (2013), 4088–4108. doi: 10.1016/j.jde.2013.02.009. Google Scholar

[14]

X. Q. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity I, Comm. Pure. Appl. Math., 69 (2016), 981–1014. doi: 10.1002/cpa.21596. Google Scholar

[15]

X. Q. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, II, Calc. Var. Partial Differential Equations, 55 (2016), Art. 25, 20 pp. doi: 10.1007/s00526-016-0964-0. Google Scholar

[16]

S. Liang and Y. Lou, On the dependence of population size upon random dispersal rate, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2771-2788. doi: 10.3934/dcdsb.2012.17.2771. Google Scholar

[17]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426. doi: 10.1016/j.jde.2005.05.010. Google Scholar

[18]

Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, Tutorials in Mathematical Biosciences. IV, 171–205, Lecture Notes in Math., 1922, Math. Biosci. Subser., Springer, Berlin, 2008. doi: 10.1007/978-3-540-74331-6_5. Google Scholar

[19]

Y. Lou, Some reaction diffusion models in spatial ecology, Scientia Sinica Mathematica, 45 (2015), 1619-1634. Google Scholar

[20]

Y. Lou and B. Wang, Local dynamics of a diffusive predator-prey model in spatially heterogeneous environment, J. Fixed Point Theory Appl., 19 (2017), 755-772. doi: 10.1007/s11784-016-0372-2. Google Scholar

[21]

W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conf. Ser. in Appl. Math. 82, SIAM, Philadelphia, 2011. doi: 10.1137/1.9781611971972. Google Scholar

[22]

K. Nagahara and E. Yanagida, Maximization of the total population in a reaction-diffusion model with logistic growth, Calc. Var. Partial Differential Equations, 57 (2018), Art. 80, 14 pp. doi: 10.1007/s00526-018-1353-7. Google Scholar

[23]

H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454. doi: 10.2977/prims/1195188180. Google Scholar

[24]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, 2nd ed., Springer-Verlag, Berlin, 1984. doi: 10.1007/978-1-4612-5282-5. Google Scholar

[1]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[2]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[3]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[4]

Wei Feng, Weihua Ruan, Xin Lu. On existence of wavefront solutions in mixed monotone reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 815-836. doi: 10.3934/dcdsb.2016.21.815

[5]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[6]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[7]

Bo Li, Xiaoyan Zhang. Steady states of a Sel'kov-Schnakenberg reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1009-1023. doi: 10.3934/dcdss.2017053

[8]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[9]

Maurizio Garrione, Marta Strani. Monotone wave fronts for $(p, q)$-Laplacian driven reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 91-103. doi: 10.3934/dcdss.2019006

[10]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[11]

Wenrui Hao, Jonathan D. Hauenstein, Bei Hu, Yuan Liu, Andrew J. Sommese, Yong-Tao Zhang. Multiple stable steady states of a reaction-diffusion model on zebrafish dorsal-ventral patterning. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1413-1428. doi: 10.3934/dcdss.2011.4.1413

[12]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[13]

Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613

[14]

Jing Liu, Xiaodong Liu, Sining Zheng, Yanping Lin. Positive steady state of a food chain system with diffusion. Conference Publications, 2007, 2007 (Special) : 667-676. doi: 10.3934/proc.2007.2007.667

[15]

Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319

[16]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[17]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[18]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[19]

Zhiting Xu, Yingying Zhao. A reaction-diffusion model of dengue transmission. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2993-3018. doi: 10.3934/dcdsb.2014.19.2993

[20]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (82)
  • HTML views (106)
  • Cited by (0)

Other articles
by authors

[Back to Top]