doi: 10.3934/dcdsb.2019121

Approximation of the interface condition for stochastic Stefan-type problems

ETH Zürich, Department of Mathematics, Rämistrasse 101, 8092 Zürich, Switzerland

Dedicated to Professor Peter E. Kloeden on the occasion of his 70th birthday

Received  March 2018 Revised  October 2018 Published  June 2019

Fund Project: The author acknowledges support by the Swiss National Science Foundation through grant SNF 205121 163425

We consider approximations of the Stefan-type condition by imbalances of volume closely around the inner interface and study convergence of the solutions of the corresponding semilinear stochastic moving boundary problems. After a coordinate transformation, the problems can be reformulated as stochastic evolution equations on fractional power domains of linear operators. Here, the coefficients might fail to have linear growths and might be Lipschitz continuous only on bounded sets. We show continuity properties of the mild solution map in the coefficients and initial data, also incorporating the possibility of explosion of the solutions.

Citation: Marvin S. Müller. Approximation of the interface condition for stochastic Stefan-type problems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019121
References:
[1]

R. ContA. Kukanov and S. Stoikov, The price impact of order book events, Journal of Financial Econometrics, 12 (2014), 47-88.

[2]

G. da Prato and J. Zabczyk, A note on stochastic convolution, Stochastic Analysis and Applications, 10 (1992), 143-153. doi: 10.1080/07362999208809260.

[3]

K. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, vol. 194, Springer-Verlag, New York, 2000.

[4]

B. Hambly and J. Kalsi, A reflected moving boundary problem driven by space-time white noise, arXiv: 1805.10166.

[5]

B. Hambly and J. Kalsi, Stefan problems for reflected spdes driven by space-time white noise, arXiv: 1806.04739.

[6]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.

[7]

M. Keller-Ressel and M. Müller, A Stefan-type stochastic moving boundary problem, Stochastics and Partial Differential Equations: Analysis and Computations, 4 (2016), 746-790. doi: 10.1007/s40072-016-0076-z.

[8]

M. Keller-Ressel and M. Müller, Forward-invariance and Wong-Zakai approximation for stochastic moving boundary problems, arXiv: 1801.05203.

[9]

K. KimZ. Zheng and R. Sowers, A stochastic Stefan problem, Journal of Theoretical Probability, 25 (2012), 1040-1080. doi: 10.1007/s10959-011-0392-1.

[10]

M. Kunze and J. van Neerven, Continuous dependence on the coefficients and global existence for stochastic reaction diffusion equations, Journal of Differential Equations, 253 (2012), 1036-1068. doi: 10.1016/j.jde.2012.04.013.

[11]

A. Lipton, U. Pesavento and M. Sotiropoulos, Trading strategies via book imbalance, Risk, 70.

[12]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, vol. 16, Springer Science & Business Media, 1995.

[13]

A. Lunardi, Interpolation Theory, , Edizioni della Normale, Pisa, 2009.

[14]

M. Müller, A stochastic Stefan-type problem under first-order boundary conditions, The Annals of Applied Probability, 28 (2018), 2335-2369. doi: 10.1214/17-AAP1359.

[15]

J. Stefan, Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere, Wien. Ber., 98 (1888), 965-983.

[16]

J. Van NeervenM. Veraar and L. Weis, Stochastic evolution equations in UMD Banach spaces, Journal of Functional Analysis, 255 (2008), 940-993. doi: 10.1016/j.jfa.2008.03.015.

[17]

Z. Zheng, Stochastic Stefan Problems: Existence, Uniqueness, and Modeling of Market Limit Orders, Ph.D thesis, University of Illinois at Urbana-Champaign, 2012.

show all references

References:
[1]

R. ContA. Kukanov and S. Stoikov, The price impact of order book events, Journal of Financial Econometrics, 12 (2014), 47-88.

[2]

G. da Prato and J. Zabczyk, A note on stochastic convolution, Stochastic Analysis and Applications, 10 (1992), 143-153. doi: 10.1080/07362999208809260.

[3]

K. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, vol. 194, Springer-Verlag, New York, 2000.

[4]

B. Hambly and J. Kalsi, A reflected moving boundary problem driven by space-time white noise, arXiv: 1805.10166.

[5]

B. Hambly and J. Kalsi, Stefan problems for reflected spdes driven by space-time white noise, arXiv: 1806.04739.

[6]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.

[7]

M. Keller-Ressel and M. Müller, A Stefan-type stochastic moving boundary problem, Stochastics and Partial Differential Equations: Analysis and Computations, 4 (2016), 746-790. doi: 10.1007/s40072-016-0076-z.

[8]

M. Keller-Ressel and M. Müller, Forward-invariance and Wong-Zakai approximation for stochastic moving boundary problems, arXiv: 1801.05203.

[9]

K. KimZ. Zheng and R. Sowers, A stochastic Stefan problem, Journal of Theoretical Probability, 25 (2012), 1040-1080. doi: 10.1007/s10959-011-0392-1.

[10]

M. Kunze and J. van Neerven, Continuous dependence on the coefficients and global existence for stochastic reaction diffusion equations, Journal of Differential Equations, 253 (2012), 1036-1068. doi: 10.1016/j.jde.2012.04.013.

[11]

A. Lipton, U. Pesavento and M. Sotiropoulos, Trading strategies via book imbalance, Risk, 70.

[12]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, vol. 16, Springer Science & Business Media, 1995.

[13]

A. Lunardi, Interpolation Theory, , Edizioni della Normale, Pisa, 2009.

[14]

M. Müller, A stochastic Stefan-type problem under first-order boundary conditions, The Annals of Applied Probability, 28 (2018), 2335-2369. doi: 10.1214/17-AAP1359.

[15]

J. Stefan, Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere, Wien. Ber., 98 (1888), 965-983.

[16]

J. Van NeervenM. Veraar and L. Weis, Stochastic evolution equations in UMD Banach spaces, Journal of Functional Analysis, 255 (2008), 940-993. doi: 10.1016/j.jfa.2008.03.015.

[17]

Z. Zheng, Stochastic Stefan Problems: Existence, Uniqueness, and Modeling of Market Limit Orders, Ph.D thesis, University of Illinois at Urbana-Champaign, 2012.

[1]

Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105

[2]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[3]

Hua Chen, Shaohua Wu. The moving boundary problem in a chemotaxis model. Communications on Pure & Applied Analysis, 2012, 11 (2) : 735-746. doi: 10.3934/cpaa.2012.11.735

[4]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[5]

Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357

[6]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[7]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[8]

Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281

[9]

Lincoln Chayes, Inwon C. Kim. The supercooled Stefan problem in one dimension. Communications on Pure & Applied Analysis, 2012, 11 (2) : 845-859. doi: 10.3934/cpaa.2012.11.845

[10]

Piotr B. Mucha. Limit of kinetic term for a Stefan problem. Conference Publications, 2007, 2007 (Special) : 741-750. doi: 10.3934/proc.2007.2007.741

[11]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[12]

Kota Kumazaki, Adrian Muntean. Local weak solvability of a moving boundary problem describing swelling along a halfline. Networks & Heterogeneous Media, 2019, 14 (3) : 445-469. doi: 10.3934/nhm.2019018

[13]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[14]

Sergey Degtyarev. Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3625-3699. doi: 10.3934/dcds.2017156

[15]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[16]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019061

[17]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[18]

Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the two-phase Stefan problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5379-5405. doi: 10.3934/dcds.2013.33.5379

[19]

Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure & Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591

[20]

Karl P. Hadeler. Stefan problem, traveling fronts, and epidemic spread. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 417-436. doi: 10.3934/dcdsb.2016.21.417

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (0)
  • HTML views (24)
  • Cited by (0)

Other articles
by authors

[Back to Top]