doi: 10.3934/dcdsb.2019120

Convergence analysis of a symplectic semi-discretization for stochastic nls equation with quadratic potential

1. 

LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China

2. 

School of Mathematical Science, University of Chinese Academy of Sciences, Beijing, 100049, China

3. 

School of Mathematics, Liaoning Normal University, Dalian, 116029, China

4. 

Department of Mathematics, College of Sciences, China University of Mining and Technology, Beijing, 100083, China

* Corresponding author: Lijun Miao

Dedicated to Peter Kloeden's 70th Birthday

Received  March 2018 Revised  February 2019 Published  June 2019

Fund Project: The first author is supported by the NNSFC (NO. 91530118, NO. 11290142 and NO. 91630312). The third author is supported by the NNSFC (NO.11601514, NO.11801556 and NO.11771444)

In this paper, we investigate the convergence in probability of a stochastic symplectic scheme for stochastic nonlinear Schrödinger equation with quadratic potential and an additive noise. Theoretical analysis shows that our symplectic semi-discretization is of order one in probability under appropriate regularity conditions for the initial value and noise. Numerical experiments are given to simulate the long time behavior of the discrete averaged charge and energy as well as the influence of the external potential and noise, and to test the convergence order.

Citation: Jialin Hong, Lijun Miao, Liying Zhang. Convergence analysis of a symplectic semi-discretization for stochastic nls equation with quadratic potential. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019120
References:
[1]

C. AntonJ. Deng and Y. Wong, Weak symplectic schemes for stochastic Hamiltonian equations, Electron. T. Numer. Ana., 43 (2014), 1-20.

[2]

R. Anton and D. Cohen, Exponential Integrators for stochastic Schrödinger equations driven by Itô noise, J. Comput. Math., 2 (2018), 276-309. doi: 10.4208/jcm.1701-m2016-0525.

[3]

W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135. doi: 10.3934/krm.2013.6.1.

[4]

R. BelaouarA. de Bouard and A. Debussche, Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion, Stoch. Partial Differ. Equ. Anal. Comput., 3 (2015), 103-132. doi: 10.1007/s40072-015-0044-z.

[5]

R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential, Math. Models Methods Appl. Sci., 12 (2002), 1513-1523. doi: 10.1142/S0218202502002215.

[6]

C. Chen and J. Hong, Symplectic Runge-Kutta semidiscretization for stochastic Schrödinger equation, SIAM J. Numer. Anal., 54 (2016), 2569-2593. doi: 10.1137/151005208.

[7]

C. ChenJ. Hong and L. Ji, Mean-Square convergence of a symplectic local discontinuous Galerkin method applied to stochastic linear Schrödinger equation, IMA J. Numer. Anal., 37 (2017), 1041-1065. doi: 10.1093/imanum/drw023.

[8]

J. CuiJ. Hong and Z. Liu, Strong convergence rate of finite difference approximations for stochastic cubic Schrödinger equations, J. Differ. Equ., 263 (2017), 3687-3713. doi: 10.1016/j.jde.2017.05.002.

[9]

A. de Bouard and A. Debussche, The stochastic nonlinear Schrödinger equation in $H^1$, Stochastic Anal. Appl., 21 (2003), 97-126. doi: 10.1081/SAP-120017534.

[10]

A. de Bouard and A. Debussche, A semi-discrete scheme for the stochastic nonlinear Schrödinger equation, Numer. Math., 96 (2004), 733-770. doi: 10.1007/s00211-003-0494-5.

[11]

A. de Bouard and A. Debussche, Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrödinger equation, Appl. Math. Optim., 54 (2006), 369-399. doi: 10.1007/s00245-006-0875-0.

[12]

D. FangL. Zhang and T. Zhang, On the well-posedness for stochastic Schrödinger equations with quadratic potential, Chin. Ann. Math. Ser. B, 32 (2011), 711-728. doi: 10.1007/s11401-011-0670-3.

[13]

J. HongY. LiuH. Munthe-Kaas and A. Zanna, Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients, Appl. Numer. Math., 56 (2006), 814-843. doi: 10.1016/j.apnum.2005.06.006.

[14]

S. JiangL. Wang and J. Hong, Stochastic multi-symplectic integrator for stochastic nonlinear Schrödinger equation, Commun. Comput. Phys., 14 (2013), 393-411. doi: 10.4208/cicp.230212.240812a.

[15]

V. Konotop and L. Vázquez, Nonlinear Random Waves, World Scientific Publishing Co., Inc., River Edge, NJ, 1994. doi: 10.1142/9789814350259.

[16]

L. MengJ. Li and J. Tao, Blow-up for the stochastic nonlinear Schrödinger equations with quadratic potential and additive noise, Bound. Value Probl., 2015 (2015), 1-18. doi: 10.1186/s13661-015-0394-5.

[17]

G. MilsteinY. Repin and M. Tretyakov, Numerical methods for stochastic systems preserving symplectic structure., SIAM J. Numer. Anal., 40 (2002), 1583-1604. doi: 10.1137/S0036142901395588.

show all references

References:
[1]

C. AntonJ. Deng and Y. Wong, Weak symplectic schemes for stochastic Hamiltonian equations, Electron. T. Numer. Ana., 43 (2014), 1-20.

[2]

R. Anton and D. Cohen, Exponential Integrators for stochastic Schrödinger equations driven by Itô noise, J. Comput. Math., 2 (2018), 276-309. doi: 10.4208/jcm.1701-m2016-0525.

[3]

W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135. doi: 10.3934/krm.2013.6.1.

[4]

R. BelaouarA. de Bouard and A. Debussche, Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion, Stoch. Partial Differ. Equ. Anal. Comput., 3 (2015), 103-132. doi: 10.1007/s40072-015-0044-z.

[5]

R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential, Math. Models Methods Appl. Sci., 12 (2002), 1513-1523. doi: 10.1142/S0218202502002215.

[6]

C. Chen and J. Hong, Symplectic Runge-Kutta semidiscretization for stochastic Schrödinger equation, SIAM J. Numer. Anal., 54 (2016), 2569-2593. doi: 10.1137/151005208.

[7]

C. ChenJ. Hong and L. Ji, Mean-Square convergence of a symplectic local discontinuous Galerkin method applied to stochastic linear Schrödinger equation, IMA J. Numer. Anal., 37 (2017), 1041-1065. doi: 10.1093/imanum/drw023.

[8]

J. CuiJ. Hong and Z. Liu, Strong convergence rate of finite difference approximations for stochastic cubic Schrödinger equations, J. Differ. Equ., 263 (2017), 3687-3713. doi: 10.1016/j.jde.2017.05.002.

[9]

A. de Bouard and A. Debussche, The stochastic nonlinear Schrödinger equation in $H^1$, Stochastic Anal. Appl., 21 (2003), 97-126. doi: 10.1081/SAP-120017534.

[10]

A. de Bouard and A. Debussche, A semi-discrete scheme for the stochastic nonlinear Schrödinger equation, Numer. Math., 96 (2004), 733-770. doi: 10.1007/s00211-003-0494-5.

[11]

A. de Bouard and A. Debussche, Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrödinger equation, Appl. Math. Optim., 54 (2006), 369-399. doi: 10.1007/s00245-006-0875-0.

[12]

D. FangL. Zhang and T. Zhang, On the well-posedness for stochastic Schrödinger equations with quadratic potential, Chin. Ann. Math. Ser. B, 32 (2011), 711-728. doi: 10.1007/s11401-011-0670-3.

[13]

J. HongY. LiuH. Munthe-Kaas and A. Zanna, Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients, Appl. Numer. Math., 56 (2006), 814-843. doi: 10.1016/j.apnum.2005.06.006.

[14]

S. JiangL. Wang and J. Hong, Stochastic multi-symplectic integrator for stochastic nonlinear Schrödinger equation, Commun. Comput. Phys., 14 (2013), 393-411. doi: 10.4208/cicp.230212.240812a.

[15]

V. Konotop and L. Vázquez, Nonlinear Random Waves, World Scientific Publishing Co., Inc., River Edge, NJ, 1994. doi: 10.1142/9789814350259.

[16]

L. MengJ. Li and J. Tao, Blow-up for the stochastic nonlinear Schrödinger equations with quadratic potential and additive noise, Bound. Value Probl., 2015 (2015), 1-18. doi: 10.1186/s13661-015-0394-5.

[17]

G. MilsteinY. Repin and M. Tretyakov, Numerical methods for stochastic systems preserving symplectic structure., SIAM J. Numer. Anal., 40 (2002), 1583-1604. doi: 10.1137/S0036142901395588.

Figure 1.  Rates of convergence for $ \epsilon = 0 $ (left) and $ \epsilon = \sqrt{2} $ (right)
Figure 2.  The profile of numerical solution $ |u(x, t)| $ for one trajectory with different noise when $ \theta = -1 $. The left figure is the case of $ \epsilon = 0.05 $, The right figure is the case of $ \epsilon = 0.5. $
Figure 3.  The profile of $ |u(t, x)| $ when $ \theta = -1 $ (left), $ 0 $ (middle), $ 1 $ (right), respectively
Figure 4.  The evolution of the averaged discrete charge as $ \theta = -1, 0, 1, \lambda = 1, \sigma = 1 $ (left); $ \epsilon = 0, 0.05, 0.5, \theta = -1, \lambda = 1, \sigma = 1 $ (right)
Figure 5.  The evolution of the averaged discrete energy as $ \theta = -1, 0, 1, \lambda = 1, \sigma = 1 $ (left); $ \epsilon = 0, 0.05, 0.5, \theta = -1, \lambda = 1, \sigma = 1 $ (right)
Figure 6.  The global errors of charge conservation law for our proposed scheme (left) and Crank-Nicolson scheme (right) as $ \epsilon = 0 $
Figure 7.  The evolution of the averaged charge for our proposed scheme (left) and Crank-Nicolson scheme (right) at $ T = 100 $
Figure 8.  The evolution of the averaged charge for our proposed scheme (left) and Crank-Nicolson scheme (right) at $ T=1000 $
[1]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[2]

Boling Guo, Guoli Zhou. On the backward uniqueness of the stochastic primitive equations with additive noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3157-3174. doi: 10.3934/dcdsb.2018305

[3]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[4]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[5]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[6]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[7]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[8]

Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831

[9]

Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791

[10]

Xiaojun Li, Xiliang Li, Kening Lu. Random attractors for stochastic parabolic equations with additive noise in weighted spaces. Communications on Pure & Applied Analysis, 2018, 17 (3) : 729-749. doi: 10.3934/cpaa.2018038

[11]

Alessandro Michelangeli. Strengthened convergence of marginals to the cubic nonlinear Schrödinger equation. Kinetic & Related Models, 2010, 3 (3) : 457-471. doi: 10.3934/krm.2010.3.457

[12]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[13]

Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-12. doi: 10.3934/dcdsb.2019075

[14]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[15]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

[16]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[17]

Shahad Al-azzawi, Jicheng Liu, Xianming Liu. Convergence rate of synchronization of systems with additive noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 227-245. doi: 10.3934/dcdsb.2017012

[18]

Daniel Gerth, Andreas Hofinger, Ronny Ramlau. On the lifting of deterministic convergence rates for inverse problems with stochastic noise. Inverse Problems & Imaging, 2017, 11 (4) : 663-687. doi: 10.3934/ipi.2017031

[19]

Tsukasa Iwabuchi, Kota Uriya. Ill-posedness for the quadratic nonlinear Schrödinger equation with nonlinearity $|u|^2$. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1395-1405. doi: 10.3934/cpaa.2015.14.1395

[20]

Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 187-208. doi: 10.3934/dcds.2018009

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (0)
  • HTML views (19)
  • Cited by (0)

Other articles
by authors

[Back to Top]