November  2019, 24(11): 6025-6052. doi: 10.3934/dcdsb.2019119

Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems

1. 

School of Information Engineering, Southwestern University of Finance and Economics, Chengdu, Sichuan 610074, China

2. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author: Zhengdong Du

Received  December 2018 Published  June 2019

Fund Project: The first author is supported by Humanities and Social Sciences Foundation of Ministry of Education of China under Grant Number 15YJAZH037. The second author is supported by NSFC (China) under Grant Number 11371264

In the last few years, Battelli and Fečkan have developed a functional analytic method to rigorously prove the existence of chaotic behaviors in time-perturbed piecewise smooth systems whose unperturbed part has a piecewise continuous homoclinic solution. In this paper, by applying their method, we study the appearance of chaos in time-perturbed piecewise smooth systems with discontinuities on finitely many switching manifolds whose unperturbed part has a hyperbolic saddle in each subregion and a heteroclinic orbit connecting those saddles that crosses every switching manifold transversally exactly once. We obtain a set of Melnikov type functions whose zeros correspond to the occurrence of chaos of the system. Furthermore, the Melnikov functions for planar piecewise smooth systems are explicitly given. As an application, we present an example of quasiperiodically excited three-dimensional piecewise linear system with four zones.

Citation: Yurong Li, Zhengdong Du. Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6025-6052. doi: 10.3934/dcdsb.2019119
References:
[1]

J. Awrejcewicz, M. Fečkan and P. Olejnik, Bifurcations of planar sliding homoclinics, Mathematical Problems in Engineering, 2006 (2006), Art. ID 85349, 13 pp. doi: 10.1155/MPE/2006/85349. Google Scholar

[2]

J. Awrejcewicz and M. M. Holicke, Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-type Methods, World Scientific, Singapore, 2007. doi: 10.1142/9789812709103. Google Scholar

[3]

M. BartuccelliP. L. ChristiansenN. F. Pedersen and M. P. Soerensen, Prediction of chaos in a Josephson junction by the Melnikov-function technique, Physical Review B, 33 (1986), 4686-4691. Google Scholar

[4]

F. Battelli and C. Lazzari, Exponential dichotomies, heteroclinic orbits, and Melnikov functions, J. Differential Equations, 86 (1990), 342-366. doi: 10.1016/0022-0396(90)90034-M. Google Scholar

[5]

F. Battelli and M. Fečkan, Homoclinic trajectories in discontinuous systems, J. Dynam. Differential Equations, 20 (2008), 337-376. doi: 10.1007/s10884-007-9087-9. Google Scholar

[6]

F. Battelli and M. Fečkan, Bifurcation and chaos near sliding homoclinics, J. Differential Equations, 248 (2010), 2227-2262. doi: 10.1016/j.jde.2009.11.003. Google Scholar

[7]

F. Battelli and M. Fečkan, An example of chaotic behaviour in presence of a sliding homoclinic orbit, Ann. Mat. Pura Appl., 189 (2010), 615-642. doi: 10.1007/s10231-010-0128-3. Google Scholar

[8]

F. Battelli and M. Fečkan, On the chaotic behaviour of discontinuous systems, J. Dynam. Differential Equations, 23 (2011), 495-540. doi: 10.1007/s10884-010-9197-7. Google Scholar

[9]

F. Battelli and M. Fečkan, Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems, Physica D, 241 (2012), 1962-1975. doi: 10.1016/j.physd.2011.05.018. Google Scholar

[10]

F. Battelli and M. Fečkan, Chaos in forced impact systems, Discrete and Continuous Dynamical Systems Series S, 6 (2013), 861-890. doi: 10.3934/dcdss.2013.6.861. Google Scholar

[11]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Springer-Verlag, London, 2008. Google Scholar

[12]

A. L. Bertozzi, Heteroclinic orbits and chaotic dynamics in planar fluid flows, SIAM J. Math. Anal., 19 (1988), 1271-1294. doi: 10.1137/0519093. Google Scholar

[13]

B. Bruhn and B. P. Koch, Heteroclinic bifurcations and invariant manifolds in rocking block dynamics, Z. Naturforsch. A, 46 (1991), 481-490. doi: 10.1515/zna-1991-0603. Google Scholar

[14]

A. Calamai and M. Franca, Melnikov methods and homoclinic orbits in discontinuous systems, J. Dynam. Differential Equations, 25 (2013), 733-764. doi: 10.1007/s10884-013-9307-4. Google Scholar

[15]

V. CarmonaS. Fernandez-GarciaE. Freire and F. Torres, Melnikov theory for a class of planar hybrid systems, Physica D, 248 (2013), 44-54. doi: 10.1016/j.physd.2013.01.002. Google Scholar

[16]

S. N. ChowJ. K. Hale and J. Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Differential Equations, 37 (1980), 351-373. doi: 10.1016/0022-0396(80)90104-7. Google Scholar

[17]

S. N. Chow and S. W. Shaw, Bifurcations of subharmonics, J. Differential Equations, 65 (1986), 304-320. doi: 10.1016/0022-0396(86)90022-7. Google Scholar

[18]

A. ColomboM. di BernardoS. J. Hogan and M. R. Jeffrey, Bifurcations of piecewise smooth flows: Perspectives, methodologies and open problems, Physica D, 241 (2012), 1845-1860. doi: 10.1016/j.physd.2011.09.017. Google Scholar

[19]

Z. DuY. LiJ. Shen and W. Zhang, Impact oscillators with homoclinic orbit tangent to the wall, Physica D, 245 (2013), 19-33. doi: 10.1016/j.physd.2012.11.007. Google Scholar

[20]

Z. Du and W. Zhang, Melnikov method for homoclinic bifurcation in nonlinear impact oscillators, Comput. Math. Appl., 50 (2005), 445-458. doi: 10.1016/j.camwa.2005.03.007. Google Scholar

[21]

M. Fečkan, Topological Degree Approach to Bifurcation Problems, Springer, Dordrecht, 2008. Google Scholar

[22] M. Fečkan, Bifurcation and Chaos in Discontinuous and Continuous Systems, Higher Education Press, Beijing, 2011. Google Scholar
[23]

J. Gao and Z. Du, Homoclinic bifurcation in a quasiperiodically excited impact inverted pendulum, Nonlinear Dynamics, 79 (2015), 1061-1074. doi: 10.1007/s11071-014-1723-4. Google Scholar

[24]

A. GranadosS. J. Hogan and T. M. Seara, The Melnikov method and subharmonic orbits in a piecewise-smooth system, SIAM J. Applied Dynamical Systems, 11 (2012), 801-830. doi: 10.1137/110850359. Google Scholar

[25]

A. GranadosS. J. Hogan and T. M. Seara, The scattering map in two coupled piecewise-smooth systems, with numerical application to rocking blocks, Physica D, 269 (2014), 1-20. doi: 10.1016/j.physd.2013.11.008. Google Scholar

[26]

J. Gruendler, Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations, J. Differential Equations, 122 (1995), 1-26. doi: 10.1006/jdeq.1995.1136. Google Scholar

[27]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2. Google Scholar

[28]

S. J. Hogan, Heteroclinic bifurcations in damped rigid block motion, Roy. Soc. London Ser. A, 439 (1992), 155-162. doi: 10.1098/rspa.1992.0140. Google Scholar

[29]

P. Kukučka, Melnikov method for discontinous planar systems, Nonlinear Anal. Ser. A, 66 (2007), 2698-2719. doi: 10.1016/j.na.2006.04.001. Google Scholar

[30]

M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin-Heidelberg, 2000. doi: 10.1007/BFb0103843. Google Scholar

[31]

M. Kunze and T. Küpper, Non-smooth dynamical systems: An overview, in Ergodic theory, analysis, and efficient simulation of dynamical systems (ed. B. Fiedler), Springer, Berlin, 2001,431–452. doi: 10.1007/978-3-642-56589-2. Google Scholar

[32]

T. Küpper, H. Hosham and D. Weiss, Bifurcation for non-smooth dynamical systems via reduction methods, in Recent trends in dynamical systems (eds. A. Johann, H.-P. Kruse, F. Rupp and S. Schmitz), Springer Proc. Math. Stat., 35, Springer, Basel, 2013, 79–105. doi: 10.1007/978-3-0348-0451-6. Google Scholar

[33]

S. Lenci and G. Rega, Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks, Internat. J. Bifur. Chaos, 15 (2005), 1901-1918. doi: 10.1142/S0218127405013046. Google Scholar

[34]

S. LiS. ChaoW. Zhang and Y. Hao, The Melnikov method of heteroclinic orbits for a class of planar hybrid piecewise-smooth systems and application, Nonlinear Dynamics, 85 (2016), 1091-1104. doi: 10.1007/s11071-016-2746-9. Google Scholar

[35]

S. LiX. GongW. Zhang and Y. Hao, The Melnikov method for detecting chaotic dynamics in a planar hybrid piecewise-smooth system with a switching manifold, Nonlinear Dynamics, 89 (2017), 939-953. doi: 10.1007/s11071-017-3493-2. Google Scholar

[36]

O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241 (2012), 1826-1844. doi: 10.1016/j.physd.2012.08.002. Google Scholar

[37]

V. K. Melnikov, On the stability of the center for time periodic perturbations, Trans. Moscow Math Soc., 12 (1963), 1-57. Google Scholar

[38]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55 (1984), 225-256. doi: 10.1016/0022-0396(84)90082-2. Google Scholar

[39]

S. W. Shaw and R. H. Rand, The transition to chaos in a simple mechanical system, Internat. J. Non-Linear Mech., 24 (1989), 41-56. doi: 10.1016/0020-7462(89)90010-3. Google Scholar

[40]

J. Shen and Z. Du, Heteroclinic bifurcation in a class of planar piecewise smooth systems with multiple zones, Z. Angew. Math. Phys., 67 (2016), Art. 42, 17 pages. doi: 10.1007/s00033-016-0642-2. Google Scholar

[41]

L. ShiY. Zou and T. Küpper, Melnikov method and detection of chaos for non-smooth systems, Acta Math. Appl. Sin. Engl. Ser., 29 (2013), 881-896. doi: 10.1007/s10255-013-0265-8. Google Scholar

[42]

D. J. W. Simpson and J. D. Meiss, Aspects of bifurcation theory for piecewise-smooth, continuous systems, Physica D, 241 (2012), 1861-1868. doi: 10.1016/j.physd.2011.05.002. Google Scholar

[43]

S. Wiggins, Global Bifurcations and Chaos - Analytical Methods, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1042-9. Google Scholar

[44]

J. X. XuR. Yan and W. Zhang, An algorithm for Melnikov functions and application to a chaotic rotor, SIAM J. Sci. Comput., 26 (2005), 1525-1546. doi: 10.1137/S1064827503420726. Google Scholar

show all references

References:
[1]

J. Awrejcewicz, M. Fečkan and P. Olejnik, Bifurcations of planar sliding homoclinics, Mathematical Problems in Engineering, 2006 (2006), Art. ID 85349, 13 pp. doi: 10.1155/MPE/2006/85349. Google Scholar

[2]

J. Awrejcewicz and M. M. Holicke, Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-type Methods, World Scientific, Singapore, 2007. doi: 10.1142/9789812709103. Google Scholar

[3]

M. BartuccelliP. L. ChristiansenN. F. Pedersen and M. P. Soerensen, Prediction of chaos in a Josephson junction by the Melnikov-function technique, Physical Review B, 33 (1986), 4686-4691. Google Scholar

[4]

F. Battelli and C. Lazzari, Exponential dichotomies, heteroclinic orbits, and Melnikov functions, J. Differential Equations, 86 (1990), 342-366. doi: 10.1016/0022-0396(90)90034-M. Google Scholar

[5]

F. Battelli and M. Fečkan, Homoclinic trajectories in discontinuous systems, J. Dynam. Differential Equations, 20 (2008), 337-376. doi: 10.1007/s10884-007-9087-9. Google Scholar

[6]

F. Battelli and M. Fečkan, Bifurcation and chaos near sliding homoclinics, J. Differential Equations, 248 (2010), 2227-2262. doi: 10.1016/j.jde.2009.11.003. Google Scholar

[7]

F. Battelli and M. Fečkan, An example of chaotic behaviour in presence of a sliding homoclinic orbit, Ann. Mat. Pura Appl., 189 (2010), 615-642. doi: 10.1007/s10231-010-0128-3. Google Scholar

[8]

F. Battelli and M. Fečkan, On the chaotic behaviour of discontinuous systems, J. Dynam. Differential Equations, 23 (2011), 495-540. doi: 10.1007/s10884-010-9197-7. Google Scholar

[9]

F. Battelli and M. Fečkan, Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems, Physica D, 241 (2012), 1962-1975. doi: 10.1016/j.physd.2011.05.018. Google Scholar

[10]

F. Battelli and M. Fečkan, Chaos in forced impact systems, Discrete and Continuous Dynamical Systems Series S, 6 (2013), 861-890. doi: 10.3934/dcdss.2013.6.861. Google Scholar

[11]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Springer-Verlag, London, 2008. Google Scholar

[12]

A. L. Bertozzi, Heteroclinic orbits and chaotic dynamics in planar fluid flows, SIAM J. Math. Anal., 19 (1988), 1271-1294. doi: 10.1137/0519093. Google Scholar

[13]

B. Bruhn and B. P. Koch, Heteroclinic bifurcations and invariant manifolds in rocking block dynamics, Z. Naturforsch. A, 46 (1991), 481-490. doi: 10.1515/zna-1991-0603. Google Scholar

[14]

A. Calamai and M. Franca, Melnikov methods and homoclinic orbits in discontinuous systems, J. Dynam. Differential Equations, 25 (2013), 733-764. doi: 10.1007/s10884-013-9307-4. Google Scholar

[15]

V. CarmonaS. Fernandez-GarciaE. Freire and F. Torres, Melnikov theory for a class of planar hybrid systems, Physica D, 248 (2013), 44-54. doi: 10.1016/j.physd.2013.01.002. Google Scholar

[16]

S. N. ChowJ. K. Hale and J. Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Differential Equations, 37 (1980), 351-373. doi: 10.1016/0022-0396(80)90104-7. Google Scholar

[17]

S. N. Chow and S. W. Shaw, Bifurcations of subharmonics, J. Differential Equations, 65 (1986), 304-320. doi: 10.1016/0022-0396(86)90022-7. Google Scholar

[18]

A. ColomboM. di BernardoS. J. Hogan and M. R. Jeffrey, Bifurcations of piecewise smooth flows: Perspectives, methodologies and open problems, Physica D, 241 (2012), 1845-1860. doi: 10.1016/j.physd.2011.09.017. Google Scholar

[19]

Z. DuY. LiJ. Shen and W. Zhang, Impact oscillators with homoclinic orbit tangent to the wall, Physica D, 245 (2013), 19-33. doi: 10.1016/j.physd.2012.11.007. Google Scholar

[20]

Z. Du and W. Zhang, Melnikov method for homoclinic bifurcation in nonlinear impact oscillators, Comput. Math. Appl., 50 (2005), 445-458. doi: 10.1016/j.camwa.2005.03.007. Google Scholar

[21]

M. Fečkan, Topological Degree Approach to Bifurcation Problems, Springer, Dordrecht, 2008. Google Scholar

[22] M. Fečkan, Bifurcation and Chaos in Discontinuous and Continuous Systems, Higher Education Press, Beijing, 2011. Google Scholar
[23]

J. Gao and Z. Du, Homoclinic bifurcation in a quasiperiodically excited impact inverted pendulum, Nonlinear Dynamics, 79 (2015), 1061-1074. doi: 10.1007/s11071-014-1723-4. Google Scholar

[24]

A. GranadosS. J. Hogan and T. M. Seara, The Melnikov method and subharmonic orbits in a piecewise-smooth system, SIAM J. Applied Dynamical Systems, 11 (2012), 801-830. doi: 10.1137/110850359. Google Scholar

[25]

A. GranadosS. J. Hogan and T. M. Seara, The scattering map in two coupled piecewise-smooth systems, with numerical application to rocking blocks, Physica D, 269 (2014), 1-20. doi: 10.1016/j.physd.2013.11.008. Google Scholar

[26]

J. Gruendler, Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations, J. Differential Equations, 122 (1995), 1-26. doi: 10.1006/jdeq.1995.1136. Google Scholar

[27]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2. Google Scholar

[28]

S. J. Hogan, Heteroclinic bifurcations in damped rigid block motion, Roy. Soc. London Ser. A, 439 (1992), 155-162. doi: 10.1098/rspa.1992.0140. Google Scholar

[29]

P. Kukučka, Melnikov method for discontinous planar systems, Nonlinear Anal. Ser. A, 66 (2007), 2698-2719. doi: 10.1016/j.na.2006.04.001. Google Scholar

[30]

M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin-Heidelberg, 2000. doi: 10.1007/BFb0103843. Google Scholar

[31]

M. Kunze and T. Küpper, Non-smooth dynamical systems: An overview, in Ergodic theory, analysis, and efficient simulation of dynamical systems (ed. B. Fiedler), Springer, Berlin, 2001,431–452. doi: 10.1007/978-3-642-56589-2. Google Scholar

[32]

T. Küpper, H. Hosham and D. Weiss, Bifurcation for non-smooth dynamical systems via reduction methods, in Recent trends in dynamical systems (eds. A. Johann, H.-P. Kruse, F. Rupp and S. Schmitz), Springer Proc. Math. Stat., 35, Springer, Basel, 2013, 79–105. doi: 10.1007/978-3-0348-0451-6. Google Scholar

[33]

S. Lenci and G. Rega, Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks, Internat. J. Bifur. Chaos, 15 (2005), 1901-1918. doi: 10.1142/S0218127405013046. Google Scholar

[34]

S. LiS. ChaoW. Zhang and Y. Hao, The Melnikov method of heteroclinic orbits for a class of planar hybrid piecewise-smooth systems and application, Nonlinear Dynamics, 85 (2016), 1091-1104. doi: 10.1007/s11071-016-2746-9. Google Scholar

[35]

S. LiX. GongW. Zhang and Y. Hao, The Melnikov method for detecting chaotic dynamics in a planar hybrid piecewise-smooth system with a switching manifold, Nonlinear Dynamics, 89 (2017), 939-953. doi: 10.1007/s11071-017-3493-2. Google Scholar

[36]

O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241 (2012), 1826-1844. doi: 10.1016/j.physd.2012.08.002. Google Scholar

[37]

V. K. Melnikov, On the stability of the center for time periodic perturbations, Trans. Moscow Math Soc., 12 (1963), 1-57. Google Scholar

[38]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55 (1984), 225-256. doi: 10.1016/0022-0396(84)90082-2. Google Scholar

[39]

S. W. Shaw and R. H. Rand, The transition to chaos in a simple mechanical system, Internat. J. Non-Linear Mech., 24 (1989), 41-56. doi: 10.1016/0020-7462(89)90010-3. Google Scholar

[40]

J. Shen and Z. Du, Heteroclinic bifurcation in a class of planar piecewise smooth systems with multiple zones, Z. Angew. Math. Phys., 67 (2016), Art. 42, 17 pages. doi: 10.1007/s00033-016-0642-2. Google Scholar

[41]

L. ShiY. Zou and T. Küpper, Melnikov method and detection of chaos for non-smooth systems, Acta Math. Appl. Sin. Engl. Ser., 29 (2013), 881-896. doi: 10.1007/s10255-013-0265-8. Google Scholar

[42]

D. J. W. Simpson and J. D. Meiss, Aspects of bifurcation theory for piecewise-smooth, continuous systems, Physica D, 241 (2012), 1861-1868. doi: 10.1016/j.physd.2011.05.002. Google Scholar

[43]

S. Wiggins, Global Bifurcations and Chaos - Analytical Methods, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1042-9. Google Scholar

[44]

J. X. XuR. Yan and W. Zhang, An algorithm for Melnikov functions and application to a chaotic rotor, SIAM J. Sci. Comput., 26 (2005), 1525-1546. doi: 10.1137/S1064827503420726. Google Scholar

Figure 1.  A heteroclinic cycle $ \Gamma $ of the unperturbed system (2) with $ n = 2 $ and $ m = 4 $
Figure 2.  The heteroclinic cycle $ \Gamma $ of the unperturbed system of (24) with $ \lambda = 1.05 $ and $ \eta = 0.75 $
[1]

Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189

[2]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[3]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[4]

Ling-Hao Zhang, Wei Wang. Direct approach to detect the heteroclinic bifurcation of the planar nonlinear system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 591-604. doi: 10.3934/dcds.2017024

[5]

Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082

[6]

Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685

[7]

Sylvain Ervedoza, Enrique Zuazua. A systematic method for building smooth controls for smooth data. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1375-1401. doi: 10.3934/dcdsb.2010.14.1375

[8]

Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373

[9]

Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1

[10]

Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381

[11]

Iryna Sushko, Anna Agliari, Laura Gardini. Bistability and border-collision bifurcations for a family of unimodal piecewise smooth maps. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 881-897. doi: 10.3934/dcdsb.2005.5.881

[12]

Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure & Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493

[13]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[14]

D. J. W. Simpson, R. Kuske. Stochastically perturbed sliding motion in piecewise-smooth systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2889-2913. doi: 10.3934/dcdsb.2014.19.2889

[15]

Simone Creo, Maria Rosaria Lancia, Alexander Nazarov, Paola Vernole. On two-dimensional nonlocal Venttsel' problems in piecewise smooth domains. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 57-64. doi: 10.3934/dcdss.2019004

[16]

N. Chernov. Statistical properties of piecewise smooth hyperbolic systems in high dimensions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 425-448. doi: 10.3934/dcds.1999.5.425

[17]

Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211

[18]

Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-15. doi: 10.3934/dcdsb.2019150

[19]

Zhujun Jing, K.Y. Chan, Dashun Xu, Hongjun Cao. Bifurcations of periodic solutions and chaos in Josephson system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 573-592. doi: 10.3934/dcds.2001.7.573

[20]

Daniel Wilczak. Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1039-1055. doi: 10.3934/dcdsb.2009.11.1039

2018 Impact Factor: 1.008

Article outline

Figures and Tables

[Back to Top]