# American Institute of Mathematical Sciences

November  2019, 24(11): 6005-6024. doi: 10.3934/dcdsb.2019118

## Bautin bifurcation in delayed reaction-diffusion systems with application to the segel-jackson model

 Department of Mathematics, Harbin Institute of Technology, Weihai 264209, China

* Corresponding author: niu@hit.edu.cn (Ben Niu)

Received  November 2018 Revised  December 2018 Published  June 2019

Fund Project: This research is supported by National Natural Science Foundation of China (11701120, 11771109) and the Foundation for Innovation at HIT(WH)

In this paper, we present an algorithm for deriving the normal forms of Bautin bifurcations in reaction-diffusion systems with time delays and Neumann boundary conditions. On the center manifold near a Bautin bifurcation, the first and second Lyapunov coefficients are calculated explicitly, which completely determine the dynamical behavior near the bifurcation point. As an example, the Segel-Jackson predator-prey model is studied. Near the Bautin bifurcation we find the existence of fold bifurcation of periodic orbits, as well as subcritical and supercritical Hopf bifurcations. Both theoretical and numerical results indicate that solutions with small (large) initial conditions converge to stable periodic orbits (diverge to infinity).

Citation: Yuxiao Guo, Ben Niu. Bautin bifurcation in delayed reaction-diffusion systems with application to the segel-jackson model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6005-6024. doi: 10.3934/dcdsb.2019118
##### References:

show all references

##### References:
The Bautin bifurcation diagram near the equilibrium for a) $l_2(0)<0$ and b) $l_2(0)>0$
$a = 5$. a) the first Lyapunov coefficient $l_1$ varies with respect to $k$. b) the Bautin bifurcation diagram near the Bautin point $(k^\ast, \tau^\ast) = (0.3075, 0.6543)$
$a = 5$. (a) Subcritical bifurcation diagram when $k = 0.8$. (b) Supercritical bifurcation diagram when $k = 0.1$
$k = 0.1$ $a = 5$. For $\tau = 1.05$, the solution of (19) with initial conditions $u_0(x, t) = 0.3-0.16\cos x$, $v_0(x, t) = 0.5-0.16\cos x$ converges to a periodic solution
$k = 0.1$, $a = 5$. For $\tau = 1.05$, the solution of (19) with initial conditions $u_0(x, t) = 10.3-0.16\cos x$, $v_0(x, t) = 10.5-0.16\cos x$ diverges to infinity
 [1] Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493 [2] Elena Beretta, Cecilia Cavaterra. Identifying a space dependent coefficient in a reaction-diffusion equation. Inverse Problems & Imaging, 2011, 5 (2) : 285-296. doi: 10.3934/ipi.2011.5.285 [3] Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085 [4] Qi An, Weihua Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 487-510. doi: 10.3934/dcdsb.2018183 [5] Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631 [6] Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523 [7] Elena Trofimchuk, Sergei Trofimchuk. Admissible wavefront speeds for a single species reaction-diffusion equation with delay. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 407-423. doi: 10.3934/dcds.2008.20.407 [8] Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385 [9] Peter E. Kloeden, Thomas Lorenz. Pullback attractors of reaction-diffusion inclusions with space-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1909-1964. doi: 10.3934/dcdsb.2017114 [10] Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245 [11] Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031 [12] Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169 [13] Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227 [14] W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893 [15] José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299 [16] Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039 [17] Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673 [18] Michaël Bages, Patrick Martinez. Existence of pulsating waves in a monostable reaction-diffusion system in solid combustion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 817-869. doi: 10.3934/dcdsb.2010.14.817 [19] José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure & Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85 [20] Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025

2018 Impact Factor: 1.008