November  2019, 24(11): 5981-5988. doi: 10.3934/dcdsb.2019116

Stable solution induced by domain geometry in the heat equation with nonlinear boundary conditions on surfaces of revolution

Instituto de Matemática e Computação, Universidade Federal de Itajubá, MG, Brazil

Received  October 2018 Published  June 2019

In this paper we consider the heat equation on surfaces of revolution subject to nonlinear Neumann boundary conditions. We provide a sufficient condition on the geometry of the surface in order to ensure the existence of an asymptotically stable nonconstant solution.

Citation: Maicon Sônego. Stable solution induced by domain geometry in the heat equation with nonlinear boundary conditions on surfaces of revolution. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5981-5988. doi: 10.3934/dcdsb.2019116
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propation, Partial Differential Equations and Related Topic (A. Dold and B. Eckmann, Eds.), pp. 5–49, Lecture Notes in Mathematics, 446, Springer-Verlag, Berlin/Heidelberg/New York, 1975. Google Scholar

[2]

C. BandleF. Punzo and A. Tesei, Existence and non-existence of patterns on Riemannian manifolds, J. Math. Anal. Appl., 387 (2012), 33-47. doi: 10.1016/j.jmaa.2011.08.060. Google Scholar

[3]

C. BandleP. MastroliaD. D. Monticelli and F. Punzo, On the stability of solutions of semilinear elliptic equations with Robin boundary conditions on Riemannian manifolds, SIAM Journal on Mathematical Analysis, 48 (2016), 122-151. doi: 10.1137/15M102647X. Google Scholar

[4]

R. G. Casten and C. J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. of Diff. Eqns., 27 (1978), 266-273. doi: 10.1016/0022-0396(78)90033-5. Google Scholar

[5]

D. Castorina and M. Sanchón, Regularity of stable solutions to semilinear elliptic equations on Riemannian models, Adv. Nonlinear Anal., 4 (2015), 295-309. doi: 10.1515/anona-2015-0047. Google Scholar

[6]

M. Chipot and J. Hale, Stable equilibria with variable diffusion, Contemp. Math., 17 (1983), 209-213. doi: 10.1090/conm/017/706100. Google Scholar

[7]

N. Cònsul, On equilibrium solutions of diffusion equations with nonlinear boundary conditions, Z. Angew Math. Phys., 47 (1996), 194-209. doi: 10.1007/BF00916824. Google Scholar

[8]

S. DipierroA. Pinamonti and E. Valdinoci, Classification of stable solutions for boundary value problems with nonlinear boundary conditions on Riemannian manifolds with nonnegative Ricci curvature, Advances in Nonlinear Analysis, 8 (2019), 1035-1042. doi: 10.1515/anona-2018-0013. Google Scholar

[9]

S. DipierroA Pinamonti and E. Valdinoci, Rigidity results in diffusion Markov triples, J. Funct. Anal, 276 (2019), 785-814. doi: 10.1016/j.jfa.2018.06.005. Google Scholar

[10]

A. S. do Nascimento and M. Sônego, Patterns on surfaces of revolution in a diffusion problem with variable diffusivity, Electron. J. Differential Equations, 2014 (2014), 1-13. Google Scholar

[11]

A. S. do NascimentoJ. Crema and M. Sônego, Sufficient conditions on diffusivity for the existence and nonexistence of stable equilibria with nonlinear flux on the boundary, Electronic Journal of Differential Equations, 2012 (2012), 1-14. Google Scholar

[12]

A. S. do Nascimento and M. Sônego, The roles of diffusivity and curvature in patterns on surfaces of revolution, J. Math. Anal. Appl., 412 (2014), 1084-1096. doi: 10.1016/j.jmaa.2013.10.058. Google Scholar

[13]

A. C. Gonçalves and A. S. do Nascimento, Instability of elliptic equations on compact Riemannian manifolds with non-negative Ricci curvature, Electronic Journal of Differential Equations, 2010 (2010), 1-18. Google Scholar

[14]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes in Mathematics, 840, 1981. Google Scholar

[15]

S. Jimbo, On a semilinear diffusion equation on a Riemannian manifold and its stable equilibrium solutions, Proc. Japan Acad. Ser. A Math. Sci., 60 (1984), 349-352. doi: 10.3792/pjaa.60.349. Google Scholar

[16]

H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. RIMS, Kyoto Univ., 15 (1979), 401-454. doi: 10.2977/prims/1195188180. Google Scholar

[17]

M. Mimura, Stationary pattern of some density-dependent diffusive system with competing dynamics, Hiroshima Mad J., 11 (1981), 621-635. doi: 10.32917/hmj/1206133994. Google Scholar

[18]

F. Punzo, The existence of patterns on surfaces of revolution without boundary, Nonlinear Analysis: Theory, Methods & Applications, 77 (2013), 94-102. doi: 10.1016/j.na.2012.09.003. Google Scholar

[19]

J. Rubinstein and G. Wolansky, Instability results for reaction diffusion equations over surfaces of revolution, J. Math. Anal. Appl., 187 (1994), 485-489. doi: 10.1006/jmaa.1994.1368. Google Scholar

[20]

M. Sônego, A note on existence of patterns on surfaces of revolution with nonlinear flux on the boundary, (submitted).Google Scholar

[21]

M. Sônego, Patterns in a balanced bistable equation with heterogeneous environments on surfaces of revolution, Differ. Equ. Appl., 8 (2016), 521-533. doi: 10.7153/dea-08-29. Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propation, Partial Differential Equations and Related Topic (A. Dold and B. Eckmann, Eds.), pp. 5–49, Lecture Notes in Mathematics, 446, Springer-Verlag, Berlin/Heidelberg/New York, 1975. Google Scholar

[2]

C. BandleF. Punzo and A. Tesei, Existence and non-existence of patterns on Riemannian manifolds, J. Math. Anal. Appl., 387 (2012), 33-47. doi: 10.1016/j.jmaa.2011.08.060. Google Scholar

[3]

C. BandleP. MastroliaD. D. Monticelli and F. Punzo, On the stability of solutions of semilinear elliptic equations with Robin boundary conditions on Riemannian manifolds, SIAM Journal on Mathematical Analysis, 48 (2016), 122-151. doi: 10.1137/15M102647X. Google Scholar

[4]

R. G. Casten and C. J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. of Diff. Eqns., 27 (1978), 266-273. doi: 10.1016/0022-0396(78)90033-5. Google Scholar

[5]

D. Castorina and M. Sanchón, Regularity of stable solutions to semilinear elliptic equations on Riemannian models, Adv. Nonlinear Anal., 4 (2015), 295-309. doi: 10.1515/anona-2015-0047. Google Scholar

[6]

M. Chipot and J. Hale, Stable equilibria with variable diffusion, Contemp. Math., 17 (1983), 209-213. doi: 10.1090/conm/017/706100. Google Scholar

[7]

N. Cònsul, On equilibrium solutions of diffusion equations with nonlinear boundary conditions, Z. Angew Math. Phys., 47 (1996), 194-209. doi: 10.1007/BF00916824. Google Scholar

[8]

S. DipierroA. Pinamonti and E. Valdinoci, Classification of stable solutions for boundary value problems with nonlinear boundary conditions on Riemannian manifolds with nonnegative Ricci curvature, Advances in Nonlinear Analysis, 8 (2019), 1035-1042. doi: 10.1515/anona-2018-0013. Google Scholar

[9]

S. DipierroA Pinamonti and E. Valdinoci, Rigidity results in diffusion Markov triples, J. Funct. Anal, 276 (2019), 785-814. doi: 10.1016/j.jfa.2018.06.005. Google Scholar

[10]

A. S. do Nascimento and M. Sônego, Patterns on surfaces of revolution in a diffusion problem with variable diffusivity, Electron. J. Differential Equations, 2014 (2014), 1-13. Google Scholar

[11]

A. S. do NascimentoJ. Crema and M. Sônego, Sufficient conditions on diffusivity for the existence and nonexistence of stable equilibria with nonlinear flux on the boundary, Electronic Journal of Differential Equations, 2012 (2012), 1-14. Google Scholar

[12]

A. S. do Nascimento and M. Sônego, The roles of diffusivity and curvature in patterns on surfaces of revolution, J. Math. Anal. Appl., 412 (2014), 1084-1096. doi: 10.1016/j.jmaa.2013.10.058. Google Scholar

[13]

A. C. Gonçalves and A. S. do Nascimento, Instability of elliptic equations on compact Riemannian manifolds with non-negative Ricci curvature, Electronic Journal of Differential Equations, 2010 (2010), 1-18. Google Scholar

[14]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes in Mathematics, 840, 1981. Google Scholar

[15]

S. Jimbo, On a semilinear diffusion equation on a Riemannian manifold and its stable equilibrium solutions, Proc. Japan Acad. Ser. A Math. Sci., 60 (1984), 349-352. doi: 10.3792/pjaa.60.349. Google Scholar

[16]

H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. RIMS, Kyoto Univ., 15 (1979), 401-454. doi: 10.2977/prims/1195188180. Google Scholar

[17]

M. Mimura, Stationary pattern of some density-dependent diffusive system with competing dynamics, Hiroshima Mad J., 11 (1981), 621-635. doi: 10.32917/hmj/1206133994. Google Scholar

[18]

F. Punzo, The existence of patterns on surfaces of revolution without boundary, Nonlinear Analysis: Theory, Methods & Applications, 77 (2013), 94-102. doi: 10.1016/j.na.2012.09.003. Google Scholar

[19]

J. Rubinstein and G. Wolansky, Instability results for reaction diffusion equations over surfaces of revolution, J. Math. Anal. Appl., 187 (1994), 485-489. doi: 10.1006/jmaa.1994.1368. Google Scholar

[20]

M. Sônego, A note on existence of patterns on surfaces of revolution with nonlinear flux on the boundary, (submitted).Google Scholar

[21]

M. Sônego, Patterns in a balanced bistable equation with heterogeneous environments on surfaces of revolution, Differ. Equ. Appl., 8 (2016), 521-533. doi: 10.7153/dea-08-29. Google Scholar

[1]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[2]

Stéphane Brull, Pierre Charrier, Luc Mieussens. Gas-surface interaction and boundary conditions for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 219-251. doi: 10.3934/krm.2014.7.219

[3]

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. The homogenization of the heat equation with mixed conditions on randomly subsets of the boundary. Conference Publications, 2013, 2013 (special) : 85-94. doi: 10.3934/proc.2013.2013.85

[4]

Huicong Li. Effective boundary conditions of the heat equation on a body coated by functionally graded material. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1415-1430. doi: 10.3934/dcds.2016.36.1415

[5]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[6]

Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627

[7]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[8]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[9]

Arthur Ramiandrisoa. Nonlinear heat equation: the radial case. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 849-870. doi: 10.3934/dcds.1999.5.849

[10]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[11]

Carl. T. Kelley, Liqun Qi, Xiaojiao Tong, Hongxia Yin. Finding a stable solution of a system of nonlinear equations arising from dynamic systems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 497-521. doi: 10.3934/jimo.2011.7.497

[12]

Igor Shevchenko, Barbara Kaltenbacher. Absorbing boundary conditions for the Westervelt equation. Conference Publications, 2015, 2015 (special) : 1000-1008. doi: 10.3934/proc.2015.1000

[13]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[14]

William G. Litvinov. Optimal control of electrorheological clutch described by nonlinear parabolic equation with nonlocal boundary conditions. Journal of Industrial & Management Optimization, 2011, 7 (2) : 291-315. doi: 10.3934/jimo.2011.7.291

[15]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[16]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[17]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061

[18]

Alexandre Nolasco de Carvalho, Marcos Roberto Teixeira Primo. Spatial homogeneity in parabolic problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 637-651. doi: 10.3934/cpaa.2004.3.637

[19]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[20]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

2018 Impact Factor: 1.008

Article outline

[Back to Top]