• Previous Article
    Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise
  • DCDS-B Home
  • This Issue
  • Next Article
    $ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity
doi: 10.3934/dcdsb.2019110

Quasi sure exponential stabilization of nonlinear systems via intermittent $ G $-Brownian motion

1. 

Department of Mathematics, Anhui Normal University, Wuhu 241000, China

2. 

School of Mathematics, Southeast University, Nanjing 211189, China

* Corresponding author

Received  September 2018 Published  June 2019

Fund Project: This work is supported by the National Natural Science Foundation of China (11871076)

This paper focuses on the quasi sure exponential stabilization of nonlinear systems. By virtue of exponential martingale inequality under $ G $-framework and intermittent $ G $-Brownian motion (in short, $ G $-ISSs), we establish the sufficient conditions to guarantee quasi surely exponential stability. The efficiency of the proposed results is illustrated by the memristor-based Chua's oscillator.

Citation: Yong Ren, Wensheng Yin. Quasi sure exponential stabilization of nonlinear systems via intermittent $ G $-Brownian motion. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019110
References:
[1]

Z. ChenP. Wu and B. Li, A strong law of large numbers for non-additive probabilities, Internat. J. Approx. Reason., 54 (2013), 365-377. doi: 10.1016/j.ijar.2012.06.002.

[2]

P. ChengF. Deng and F. Yao, Almost sure exponential stability and stochastic stabilization of stochastic differential systems with impulsive effects, Nonlinear Anal. Hybrid Syst., 30 (2018), 106-117. doi: 10.1016/j.nahs.2018.05.003.

[3]

F. DengQ. Luo and X. Mao, Stochastic stabilization of hybrid differential equations, Automatica, 48 (2012), 2321-2328. doi: 10.1016/j.automatica.2012.06.044.

[4]

L. DenisM. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion pathes, Potential Anal., 34 (2011), 139-161. doi: 10.1007/s11118-010-9185-x.

[5]

F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion, Stochastic Process. Appl., 119 (2009), 3356-3382. doi: 10.1016/j.spa.2009.05.010.

[6]

Q. GuoX. Mao and R. Yue, Almost sure exponential stability of stochastic differential delay equations, SIAM J. Control Optim., 54 (2016), 1919-1933. doi: 10.1137/15M1019465.

[7]

B. GuoY. WuY. Xiao and C. Zhang, Graph-theoretic approach to synchronizing stochastic coupled systems with time-varying delays on networks via periodically intermittent control, Appl. Math. Comput., 331 (2018), 341-357. doi: 10.1016/j.amc.2018.03.020.

[8]

F. Hu, The modulus of continuity theorem for G-Brownian motion, Comm. Statist. Theory Methods, 46 (2017), 3586-3598. doi: 10.1080/03610926.2015.1066816.

[9]

F. HuZ. Chen and P. Wu, A general strong law of large numbers for non-additive probabilities and its applications, Statistics, 50 (2016), 733-749. doi: 10.1080/02331888.2016.1143473.

[10]

F. HuZ. Chen and D. Zhang, How big are the increments of G-Brownian motion?, Sci. China Math., 57 (2014), 1687-1700. doi: 10.1007/s11425-014-4816-0.

[11]

F. Hu and Z. Chen, General laws of large numbers under sublinear expectations, Comm. Statist. Theory Methods, 45 (2016), 4215-4229. doi: 10.1080/03610926.2014.917677.

[12]

F. Hu and D. Zhang, Central limit theorem for capacities, C. R. Math. Acad. Sci. Paris, 348 (2010), 1111-1114. doi: 10.1016/j.crma.2010.07.026.

[13]

L. Hu and X. Mao, Almost sure exponential stabilization of stochastic systems by state feedback control, Automatica J. IFAC., 44 (2008), 465-471. doi: 10.1016/j.automatica.2007.05.027.

[14]

C. HuJ. YuH. Jiang and Z. Teng, Exponential stabilization and synchronization of neural networks with time-varying delays via periodically intermittent control, Nonlinearity, 23 (2010), 2369-2391. doi: 10.1088/0951-7715/23/10/002.

[15]

X. LiX. Lin and Y. Lin, Lyapunov-type conditions and stochastic differential equations driven by G-Brownian motion, J. Math. Anal. Appl., 439 (2016), 235-255. doi: 10.1016/j.jmaa.2016.02.042.

[16]

X. Mao, stochastic stabilization and destabilization, Syst. Control Lett., 23 (1994), 279-290. doi: 10.1016/0167-6911(94)90050-7.

[17]

X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008. ⅹⅷ+422 pp. ISBN: 978-1-904275-34-3. doi: 10.1533/9780857099402.

[18]

X. MaoJ. Lam and L. Huang, Stabilization of hybrid stochastic differential equations by delay feedback control, System Control Lett., 57 (2008), 927-935. doi: 10.1016/j.sysconle.2008.05.002.

[19]

X. MaoG. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica, 43 (2007), 264-273. doi: 10.1016/j.automatica.2006.09.006.

[20]

X. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE Tran. Autom. Control, 61 (2016), 1619-1624. doi: 10.1109/TAC.2015.2471696.

[21]

S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, Stochastic Analysis and Applications, in: Abel Symp., Springer, Berlin, 2 (2007), 541–567. doi: 10.1007/978-3-540-70847-6_25.

[22]

Y. RenW. Yin and D. Zhu, Exponential stability of SDEs driven by G-Brownian motion with delayed impulsive effects: average impulsive interval approach, Discrete Conti. Dyn. Syst. Ser–B., 23 (2018), 3347-3360. doi: 10.3934/dcdsb.2018248.

[23]

Y. RenX. Jia and L. Hu, Exponential stability of solutions to impulsive stochastic differential equations driven by G-Brownian motion, Discrete Conti. Dyn. Syst. Ser–B., 20 (2017), 2157-2169. doi: 10.3934/dcdsb.2015.20.2157.

[24]

M. Song and X. Mao, Almost sure exponential stability of hybrid stochastic functional differential equations, J. Math. Anal. Appl., 458 (2018), 1390-1408. doi: 10.1016/j.jmaa.2017.10.042.

[25]

F. WuX. Mao and S. Hu, Stochastic suppression and stabilization of functional differential equations, System Control Lett., 59 (2010), 745-753. doi: 10.1016/j.sysconle.2010.08.011.

[26]

F. WuX. Mao and P. E. Kloeden, Almost sure exponential stability of the Euler-Maruyama approximations for stochastic functional differential equations, Random Oper. Stoch. Equ., 19 (2011), 165-186. doi: 10.1515/ROSE.2011.010.

[27]

S. YangC. Li and T. Huang, Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control, Neural Networks, 75 (2016), 162-172. doi: 10.1016/j.neunet.2015.12.003.

[28]

D. Zhang and Z. Chen, Exponential stability for stochastic differential equations driven by G-Brownian motion, Appl. Math. Letter., 25 (2012), 1906-1910. doi: 10.1016/j.aml.2012.02.063.

[29]

B. ZhangF. DengS. Peng and S. Xie, Stabilization and destabilization of nonlinear systems via intermittent stochastic noise with application to memristor-based system, J. Franklin Inst., 355 (2018), 3829-3852. doi: 10.1016/j.jfranklin.2017.12.033.

[30]

S. ZhuK. SunS. Zhou and Y. Shi, Stochastic suppression and almost surely stabilization of non-autonomous hybrid system with a new general one-sided polynomial, J. Franklin Inst., 354 (2017), 6550-6566. doi: 10.1016/j.jfranklin.2017.08.007.

show all references

References:
[1]

Z. ChenP. Wu and B. Li, A strong law of large numbers for non-additive probabilities, Internat. J. Approx. Reason., 54 (2013), 365-377. doi: 10.1016/j.ijar.2012.06.002.

[2]

P. ChengF. Deng and F. Yao, Almost sure exponential stability and stochastic stabilization of stochastic differential systems with impulsive effects, Nonlinear Anal. Hybrid Syst., 30 (2018), 106-117. doi: 10.1016/j.nahs.2018.05.003.

[3]

F. DengQ. Luo and X. Mao, Stochastic stabilization of hybrid differential equations, Automatica, 48 (2012), 2321-2328. doi: 10.1016/j.automatica.2012.06.044.

[4]

L. DenisM. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion pathes, Potential Anal., 34 (2011), 139-161. doi: 10.1007/s11118-010-9185-x.

[5]

F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion, Stochastic Process. Appl., 119 (2009), 3356-3382. doi: 10.1016/j.spa.2009.05.010.

[6]

Q. GuoX. Mao and R. Yue, Almost sure exponential stability of stochastic differential delay equations, SIAM J. Control Optim., 54 (2016), 1919-1933. doi: 10.1137/15M1019465.

[7]

B. GuoY. WuY. Xiao and C. Zhang, Graph-theoretic approach to synchronizing stochastic coupled systems with time-varying delays on networks via periodically intermittent control, Appl. Math. Comput., 331 (2018), 341-357. doi: 10.1016/j.amc.2018.03.020.

[8]

F. Hu, The modulus of continuity theorem for G-Brownian motion, Comm. Statist. Theory Methods, 46 (2017), 3586-3598. doi: 10.1080/03610926.2015.1066816.

[9]

F. HuZ. Chen and P. Wu, A general strong law of large numbers for non-additive probabilities and its applications, Statistics, 50 (2016), 733-749. doi: 10.1080/02331888.2016.1143473.

[10]

F. HuZ. Chen and D. Zhang, How big are the increments of G-Brownian motion?, Sci. China Math., 57 (2014), 1687-1700. doi: 10.1007/s11425-014-4816-0.

[11]

F. Hu and Z. Chen, General laws of large numbers under sublinear expectations, Comm. Statist. Theory Methods, 45 (2016), 4215-4229. doi: 10.1080/03610926.2014.917677.

[12]

F. Hu and D. Zhang, Central limit theorem for capacities, C. R. Math. Acad. Sci. Paris, 348 (2010), 1111-1114. doi: 10.1016/j.crma.2010.07.026.

[13]

L. Hu and X. Mao, Almost sure exponential stabilization of stochastic systems by state feedback control, Automatica J. IFAC., 44 (2008), 465-471. doi: 10.1016/j.automatica.2007.05.027.

[14]

C. HuJ. YuH. Jiang and Z. Teng, Exponential stabilization and synchronization of neural networks with time-varying delays via periodically intermittent control, Nonlinearity, 23 (2010), 2369-2391. doi: 10.1088/0951-7715/23/10/002.

[15]

X. LiX. Lin and Y. Lin, Lyapunov-type conditions and stochastic differential equations driven by G-Brownian motion, J. Math. Anal. Appl., 439 (2016), 235-255. doi: 10.1016/j.jmaa.2016.02.042.

[16]

X. Mao, stochastic stabilization and destabilization, Syst. Control Lett., 23 (1994), 279-290. doi: 10.1016/0167-6911(94)90050-7.

[17]

X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008. ⅹⅷ+422 pp. ISBN: 978-1-904275-34-3. doi: 10.1533/9780857099402.

[18]

X. MaoJ. Lam and L. Huang, Stabilization of hybrid stochastic differential equations by delay feedback control, System Control Lett., 57 (2008), 927-935. doi: 10.1016/j.sysconle.2008.05.002.

[19]

X. MaoG. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica, 43 (2007), 264-273. doi: 10.1016/j.automatica.2006.09.006.

[20]

X. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE Tran. Autom. Control, 61 (2016), 1619-1624. doi: 10.1109/TAC.2015.2471696.

[21]

S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, Stochastic Analysis and Applications, in: Abel Symp., Springer, Berlin, 2 (2007), 541–567. doi: 10.1007/978-3-540-70847-6_25.

[22]

Y. RenW. Yin and D. Zhu, Exponential stability of SDEs driven by G-Brownian motion with delayed impulsive effects: average impulsive interval approach, Discrete Conti. Dyn. Syst. Ser–B., 23 (2018), 3347-3360. doi: 10.3934/dcdsb.2018248.

[23]

Y. RenX. Jia and L. Hu, Exponential stability of solutions to impulsive stochastic differential equations driven by G-Brownian motion, Discrete Conti. Dyn. Syst. Ser–B., 20 (2017), 2157-2169. doi: 10.3934/dcdsb.2015.20.2157.

[24]

M. Song and X. Mao, Almost sure exponential stability of hybrid stochastic functional differential equations, J. Math. Anal. Appl., 458 (2018), 1390-1408. doi: 10.1016/j.jmaa.2017.10.042.

[25]

F. WuX. Mao and S. Hu, Stochastic suppression and stabilization of functional differential equations, System Control Lett., 59 (2010), 745-753. doi: 10.1016/j.sysconle.2010.08.011.

[26]

F. WuX. Mao and P. E. Kloeden, Almost sure exponential stability of the Euler-Maruyama approximations for stochastic functional differential equations, Random Oper. Stoch. Equ., 19 (2011), 165-186. doi: 10.1515/ROSE.2011.010.

[27]

S. YangC. Li and T. Huang, Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control, Neural Networks, 75 (2016), 162-172. doi: 10.1016/j.neunet.2015.12.003.

[28]

D. Zhang and Z. Chen, Exponential stability for stochastic differential equations driven by G-Brownian motion, Appl. Math. Letter., 25 (2012), 1906-1910. doi: 10.1016/j.aml.2012.02.063.

[29]

B. ZhangF. DengS. Peng and S. Xie, Stabilization and destabilization of nonlinear systems via intermittent stochastic noise with application to memristor-based system, J. Franklin Inst., 355 (2018), 3829-3852. doi: 10.1016/j.jfranklin.2017.12.033.

[30]

S. ZhuK. SunS. Zhou and Y. Shi, Stochastic suppression and almost surely stabilization of non-autonomous hybrid system with a new general one-sided polynomial, J. Franklin Inst., 354 (2017), 6550-6566. doi: 10.1016/j.jfranklin.2017.08.007.

[1]

Yong Ren, Huijin Yang, Wensheng Yin. Weighted exponential stability of stochastic coupled systems on networks with delay driven by $ G $-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3379-3393. doi: 10.3934/dcdsb.2018325

[2]

Yong Ren, Xuejuan Jia, Lanying Hu. Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2157-2169. doi: 10.3934/dcdsb.2015.20.2157

[3]

Yong Ren, Wensheng Yin, Dongjin Zhu. Exponential stability of SDEs driven by $G$-Brownian motion with delayed impulsive effects: average impulsive interval approach. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3347-3360. doi: 10.3934/dcdsb.2018248

[4]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[5]

Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197

[6]

Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

[7]

Henryk Leszczyński, Monika Wrzosek. Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion. Mathematical Biosciences & Engineering, 2017, 14 (1) : 237-248. doi: 10.3934/mbe.2017015

[8]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[9]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[10]

Fabrice Baudoin, Camille Tardif. Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinetic & Related Models, 2018, 11 (1) : 1-23. doi: 10.3934/krm.2018001

[11]

Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075

[12]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[13]

Assane Lo, Nasser-eddine Tatar. Exponential stabilization of a structure with interfacial slip. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6285-6306. doi: 10.3934/dcds.2016073

[14]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[15]

Dingjun Yao, Rongming Wang, Lin Xu. Optimal asset control of a geometric Brownian motion with the transaction costs and bankruptcy permission. Journal of Industrial & Management Optimization, 2015, 11 (2) : 461-478. doi: 10.3934/jimo.2015.11.461

[16]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the exponential stabilization of a thermo piezoelectric/piezomagnetic system. Evolution Equations & Control Theory, 2012, 1 (2) : 315-336. doi: 10.3934/eect.2012.1.315

[17]

Xiu-Fang Liu, Gen-Qi Xu. Exponential stabilization of Timoshenko beam with input and output delays. Mathematical Control & Related Fields, 2016, 6 (2) : 271-292. doi: 10.3934/mcrf.2016004

[18]

Hussain Alazki, Alexander Poznyak. Robust output stabilization for a class of nonlinear uncertain stochastic systems under multiplicative and additive noises: The attractive ellipsoid method. Journal of Industrial & Management Optimization, 2016, 12 (1) : 169-186. doi: 10.3934/jimo.2016.12.169

[19]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[20]

Alexander Shmyrov, Vasily Shmyrov. The optimal stabilization of orbital motion in a neighborhood of collinear libration point. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 185-189. doi: 10.3934/naco.2017012

2017 Impact Factor: 0.972

Article outline

[Back to Top]