November  2019, 24(11): 5785-5802. doi: 10.3934/dcdsb.2019106

A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals

1. 

Department of Mathematics, University of York, Heslington Road, York YO10 5DD, UK

2. 

Department of Mathematics and Information Technology, Montanuniversität Leoben, Franz Josef Straẞe 18, 8700 Leoben, Austria

3. 

Department of Mathematics and Applied Mathematics, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa, Current Address: Department of Mathematics, University of York, Heslington Road, York YO10 5DD, UK

* Corresponding author: Paul André Razafimandimby

This article is part of a project that is currently funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No. 791735 "SELEs". Part of this work was written while P. A. Razafimandimby was at the University of Pretoria; he is grateful to the funding he received from the National Research Foundation South Africa (Grant Numbers 109355 and 112084). He is also grateful to the European Mathematical Society for the EMS-Simons for Africa-Collaborative research grant which enables him to visit Montanuniversität Leoben, Austria

Received  July 2018 Published  June 2019

Fund Project: E. Hausenblas is supported by the FWF-Austrian Science Fund through the Stand-Alone grant number P28010

In this note we prove the existence and uniqueness of local maximal smooth solution of the stochastic simplified Ericksen-Leslie systems modelling the dynamics of nematic liquid crystals under stochastic perturbations.

Citation: Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5785-5802. doi: 10.3934/dcdsb.2019106
References:
[1]

K. Atkinson and W. Han, Theoretical Numerical Analysis. A Functional Analysis Framework, Third edition. Volume 39 of Texts in Applied Mathematics, Springer, Dordrecht, 2009. doi: 10.1007/978-1-4419-0458-4. Google Scholar

[2]

R. BeckerX. Feng and A. Prohl, Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow,, SIAM J. Numer. Anal., 46 (2008), 1704-1731. doi: 10.1137/07068254X. Google Scholar

[3]

H. BessaihZ. Brzeźniak and A. Millet, Splitting up method for the 2D stochastic Navier-Stokes equations,, Stoch. Partial Differ. Equ. Anal. Comput., 2 (2014), 433-470. doi: 10.1007/s40072-014-0041-7. Google Scholar

[4]

Z. BrzeźniakS. Cerrai and M. Freidlin, Quasipotential and exit time for 2D Stochastic Navier-Stokes equations driven by space time white noise,, Probab. Theory Related Fields, 162 (2015), 739-793. doi: 10.1007/s00440-014-0584-6. Google Scholar

[5]

Z. Brzeźniak and K. D. Elworthy, Stochastic differential equations on Banach manifolds, Methods Funct. Anal. Topology, 6 (2000), 43-84. Google Scholar

[6]

Z. Brzeźniak and B. Ferrario, A note on stochastic Navier–Stokes equations with not regular multiplicative noise, Stoch. Partial Differ. Equ. Anal. Comput., 5 (2017), 53-80. doi: 10.1007/s40072-016-0081-2. Google Scholar

[7]

Z. Brzeźniak, E. Hausenblas and P. Razafimandimby, Some results on the penalised nematic liquid crystals driven by multiplicative noise, arXiv preprint, arXiv: 1310.8641, (2016), 65 pages.Google Scholar

[8]

Z. Brzeźniak and A. Millet, On the stochastic Strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact Riemannian manifold,, Potential Anal., 41 (2014), 269-315. doi: 10.1007/s11118-013-9369-2. Google Scholar

[9]

C. CavaterraR. Rocca and H. Wu, Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013), 24-57. doi: 10.1016/j.jde.2013.03.009. Google Scholar

[10] S. Chandrasekhar, Liquid Crystals, Cambridge University Press, 1992. Google Scholar
[11]

B. Climent-EzquerraF. Guillén-González and M. A. Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. Angew. Math. Phys., 57 (2006), 984-998. doi: 10.1007/s00033-005-0038-1. Google Scholar

[12]

B. Climent-Ezquerra and F. Guillén-González, A review of mathematical analysis of nematic and smectic-A liquid crystal models, European J. Appl. Math., 25 (2014), 133-153. doi: 10.1017/S0956792513000338. Google Scholar

[13]

D. Coutand and S. Shkoller, Well-posdness of the full Ericksen-Leslie Model of nematic liquid crystals,, C.R. Acad. Sci. Paris. Série I, 333 (2001), 919-924. doi: 10.1016/S0764-4442(01)02161-9. Google Scholar

[14]

M. Dai and M. Schonbek, Asymptotic behavior of solutions to the liquid crystal system in $H^m(R^3)$, SIAM J. Math. Anal., 46 (2014), 3131-3150. doi: 10.1137/120895342. Google Scholar

[15] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993. Google Scholar
[16]

K. D. Elworthy, Stochastic Differential Equations on Manifolds, London Math. Soc. LNS v 70, Cambridge University Press, 1982. Google Scholar

[17]

J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheology, 5 (1961), 23-34. doi: 10.1122/1.548883. Google Scholar

[18]

C. G. Gal and T. T. Medjo, On a regularized family of models for homogeneous incompressible two-phase flows, J. Nonlinear Sci., 24 (2014), 1033-1103. doi: 10.1007/s00332-014-9211-z. Google Scholar

[19]

M. Grasselli and H. Wu, Long-time behavior for a hydrodynamic model on nematic liquid crystal flows with asymptotic stabilizing boundary condition and external force, SIAM J. Math. Anal., 45 (2013), 965-1002. doi: 10.1137/120866476. Google Scholar

[20]

I. Gyöngy and N. V. Krylov, On stochastics equations with respect to semimartingales. Ⅱ. Itô formula in Banach spaces,, Stochastics, 6 (1981/82), 153-173. doi: 10.1080/17442508208833202. Google Scholar

[21]

D. D. Haroske and H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations, EMS Textbooks in Mathematics. European Mathematical Society, Zürich, 2008. Google Scholar

[22]

M. HieberM. NesensohnJ. Prüss and K. Schade, Dynamics of nematic liquid crystal flows: The quasilinear approach, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 397-408. doi: 10.1016/j.anihpc.2014.11.001. Google Scholar

[23]

M. Hieber and J. Prüss, Dynamics of the Ericksen-Leslie equations with general Leslie stress Ⅰ: the incompressible isotropic case, Math. Ann., 369 (2017), 977-996. doi: 10.1007/s00208-016-1453-7. Google Scholar

[24]

M.-C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Calculus of Variations, 40 (2011), 15-36. doi: 10.1007/s00526-010-0331-5. Google Scholar

[25]

M.-C. Hong and Z. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $ \mathbb{R}^2$, Adv. Math., 231 (2012), 1364-1400. doi: 10.1016/j.aim.2012.06.009. Google Scholar

[26]

M.-C. HongJ. Li and Z. Xin, Blow-up criteria of strong solutions to the Ericksen-Leslie system in $ \mathbb{R}^3$, Comm. Partial Differential Equations, 39 (2014), 1284-1328. doi: 10.1080/03605302.2013.871026. Google Scholar

[27]

W. Horsthemke and R. Lefever, Noise-induced Transitions. Theory and Applications in Physics, Chemistry, and Biology, Springer Series in Synergetics, 15. Springer-Verlag, Berlin, 1984. Google Scholar

[28]

J. HuangF. LinFa nghua and C. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in $ \mathbb{R}^2$, Comm. Math. Phys., 331 (2014), 805-850. doi: 10.1007/s00220-014-2079-9. Google Scholar

[29]

T. HuangF. LinC. Liu and C. Wang, Finite time singularity of the nematic liquid crystal flow in dimension three, Arch. Ration. Mech. Anal., 221 (2016), 1223-1254. doi: 10.1007/s00205-016-0983-1. Google Scholar

[30]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704. Google Scholar

[31]

T. Kato and G. Ponce, Well posedness of the Euler and Navier–Stokes equations in the Lebesgues spaces $L^p_s(\mathbb{R}^2)$,, Rev. Mat. Iberoam., 2 (1986), 73-88. doi: 10.4171/RMI/26. Google Scholar

[32] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, 1990. Google Scholar
[33]

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810. Google Scholar

[34]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Communications on Pure and Applied Mathematics, 48 (1995), 501-537. doi: 10.1002/cpa.3160480503. Google Scholar

[35]

F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system,, Arch. Rational Mech. Anal., 154 (2000), 135-156. doi: 10.1007/s002050000102. Google Scholar

[36]

F. Lin and C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130361, 18 pp. doi: 10.1098/rsta.2013.0361. Google Scholar

[37]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals,, Chinese Annals of Mathematics, Series B., 31 (2010), 921-938. doi: 10.1007/s11401-010-0612-5. Google Scholar

[38]

F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Comm. Pure Appl. Math., 69 (2016), 1532-1571. doi: 10.1002/cpa.21583. Google Scholar

[39]

F. LinJ. Lin and C. Wang, Liquid crystals in two dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297-336. doi: 10.1007/s00205-009-0278-x. Google Scholar

[40]

C. Liu and N. J. Walkington, Approximation of liquid crystal flows,, SIAM J. Numer. Anal., 37 (2000), 725-741. doi: 10.1137/S0036142997327282. Google Scholar

[41]

R. Mikulevicius, On strong $ \mathrm{H}^{1}_2$-solutions of stochastic Navier-Stokes equation in a bounded domain, SIAM J. Math. Anal., 41 (2009), 1206-1230. doi: 10.1137/0807433747. Google Scholar

[42] E. M. Ouhabaz, Analysis of Heat Equations on Domains,, Volume 31 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, 2005. Google Scholar
[43]

E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 3 (1979), 127-167. doi: 10.1080/17442507908833142. Google Scholar

[44]

E. Pardoux, Equations aux Dérivées Partielles Stochastiques Monotones, Theèse de Doctorat, Université Paris-Sud, 1975. Google Scholar

[45]

F. Sagués and M. San Miguel, Dynamics of Fréedericksz transition in a fluctuating magnetic field,, Phys. Rev. A., 32 (1985), 1843-1851. Google Scholar

[46]

M. San Miguel, Nematic liquid crystals in a stochastic magnetic field: Spatial correlations, Phys. Rev. A, 32 (1985), 3811-3813. Google Scholar

[47]

S. Shkoller, Well-posedness and global attractors for liquid crystal on Riemannian manifolds,, Communication in Partial Differential Equations, 27 (2002), 1103-1137. doi: 10.1081/PDE-120004895. Google Scholar

[48]

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. Google Scholar

[49]

M. Wang and W. Wang, Global existence of weak solution for the 2-D Ericksen-Leslie system,, Calc. Var. Partial Differential Equations, 51 (2014), 915-962. doi: 10.1007/s00526-013-0700-y. Google Scholar

[50]

W. WangP. Zhang and Z. Zhang, Well-posedness of the Ericksen-Leslie system,, Arch. Ration. Mech. Anal., 210 (2013), 837-855. doi: 10.1007/s00205-013-0659-z. Google Scholar

[51]

M. WangW. Wang and Z. Zhang, On the uniqueness of weak solution for the 2-D Ericksen-Leslie system, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 919-941. doi: 10.3934/dcdsb.2016.21.919. Google Scholar

[52]

W. WangP. Zhang and Z. Zhang, The small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equation, Comm. Pure Appl. Math., 68 (2015), 1326-1398. doi: 10.1002/cpa.21549. Google Scholar

show all references

References:
[1]

K. Atkinson and W. Han, Theoretical Numerical Analysis. A Functional Analysis Framework, Third edition. Volume 39 of Texts in Applied Mathematics, Springer, Dordrecht, 2009. doi: 10.1007/978-1-4419-0458-4. Google Scholar

[2]

R. BeckerX. Feng and A. Prohl, Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow,, SIAM J. Numer. Anal., 46 (2008), 1704-1731. doi: 10.1137/07068254X. Google Scholar

[3]

H. BessaihZ. Brzeźniak and A. Millet, Splitting up method for the 2D stochastic Navier-Stokes equations,, Stoch. Partial Differ. Equ. Anal. Comput., 2 (2014), 433-470. doi: 10.1007/s40072-014-0041-7. Google Scholar

[4]

Z. BrzeźniakS. Cerrai and M. Freidlin, Quasipotential and exit time for 2D Stochastic Navier-Stokes equations driven by space time white noise,, Probab. Theory Related Fields, 162 (2015), 739-793. doi: 10.1007/s00440-014-0584-6. Google Scholar

[5]

Z. Brzeźniak and K. D. Elworthy, Stochastic differential equations on Banach manifolds, Methods Funct. Anal. Topology, 6 (2000), 43-84. Google Scholar

[6]

Z. Brzeźniak and B. Ferrario, A note on stochastic Navier–Stokes equations with not regular multiplicative noise, Stoch. Partial Differ. Equ. Anal. Comput., 5 (2017), 53-80. doi: 10.1007/s40072-016-0081-2. Google Scholar

[7]

Z. Brzeźniak, E. Hausenblas and P. Razafimandimby, Some results on the penalised nematic liquid crystals driven by multiplicative noise, arXiv preprint, arXiv: 1310.8641, (2016), 65 pages.Google Scholar

[8]

Z. Brzeźniak and A. Millet, On the stochastic Strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact Riemannian manifold,, Potential Anal., 41 (2014), 269-315. doi: 10.1007/s11118-013-9369-2. Google Scholar

[9]

C. CavaterraR. Rocca and H. Wu, Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013), 24-57. doi: 10.1016/j.jde.2013.03.009. Google Scholar

[10] S. Chandrasekhar, Liquid Crystals, Cambridge University Press, 1992. Google Scholar
[11]

B. Climent-EzquerraF. Guillén-González and M. A. Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. Angew. Math. Phys., 57 (2006), 984-998. doi: 10.1007/s00033-005-0038-1. Google Scholar

[12]

B. Climent-Ezquerra and F. Guillén-González, A review of mathematical analysis of nematic and smectic-A liquid crystal models, European J. Appl. Math., 25 (2014), 133-153. doi: 10.1017/S0956792513000338. Google Scholar

[13]

D. Coutand and S. Shkoller, Well-posdness of the full Ericksen-Leslie Model of nematic liquid crystals,, C.R. Acad. Sci. Paris. Série I, 333 (2001), 919-924. doi: 10.1016/S0764-4442(01)02161-9. Google Scholar

[14]

M. Dai and M. Schonbek, Asymptotic behavior of solutions to the liquid crystal system in $H^m(R^3)$, SIAM J. Math. Anal., 46 (2014), 3131-3150. doi: 10.1137/120895342. Google Scholar

[15] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993. Google Scholar
[16]

K. D. Elworthy, Stochastic Differential Equations on Manifolds, London Math. Soc. LNS v 70, Cambridge University Press, 1982. Google Scholar

[17]

J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheology, 5 (1961), 23-34. doi: 10.1122/1.548883. Google Scholar

[18]

C. G. Gal and T. T. Medjo, On a regularized family of models for homogeneous incompressible two-phase flows, J. Nonlinear Sci., 24 (2014), 1033-1103. doi: 10.1007/s00332-014-9211-z. Google Scholar

[19]

M. Grasselli and H. Wu, Long-time behavior for a hydrodynamic model on nematic liquid crystal flows with asymptotic stabilizing boundary condition and external force, SIAM J. Math. Anal., 45 (2013), 965-1002. doi: 10.1137/120866476. Google Scholar

[20]

I. Gyöngy and N. V. Krylov, On stochastics equations with respect to semimartingales. Ⅱ. Itô formula in Banach spaces,, Stochastics, 6 (1981/82), 153-173. doi: 10.1080/17442508208833202. Google Scholar

[21]

D. D. Haroske and H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations, EMS Textbooks in Mathematics. European Mathematical Society, Zürich, 2008. Google Scholar

[22]

M. HieberM. NesensohnJ. Prüss and K. Schade, Dynamics of nematic liquid crystal flows: The quasilinear approach, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 397-408. doi: 10.1016/j.anihpc.2014.11.001. Google Scholar

[23]

M. Hieber and J. Prüss, Dynamics of the Ericksen-Leslie equations with general Leslie stress Ⅰ: the incompressible isotropic case, Math. Ann., 369 (2017), 977-996. doi: 10.1007/s00208-016-1453-7. Google Scholar

[24]

M.-C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Calculus of Variations, 40 (2011), 15-36. doi: 10.1007/s00526-010-0331-5. Google Scholar

[25]

M.-C. Hong and Z. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $ \mathbb{R}^2$, Adv. Math., 231 (2012), 1364-1400. doi: 10.1016/j.aim.2012.06.009. Google Scholar

[26]

M.-C. HongJ. Li and Z. Xin, Blow-up criteria of strong solutions to the Ericksen-Leslie system in $ \mathbb{R}^3$, Comm. Partial Differential Equations, 39 (2014), 1284-1328. doi: 10.1080/03605302.2013.871026. Google Scholar

[27]

W. Horsthemke and R. Lefever, Noise-induced Transitions. Theory and Applications in Physics, Chemistry, and Biology, Springer Series in Synergetics, 15. Springer-Verlag, Berlin, 1984. Google Scholar

[28]

J. HuangF. LinFa nghua and C. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in $ \mathbb{R}^2$, Comm. Math. Phys., 331 (2014), 805-850. doi: 10.1007/s00220-014-2079-9. Google Scholar

[29]

T. HuangF. LinC. Liu and C. Wang, Finite time singularity of the nematic liquid crystal flow in dimension three, Arch. Ration. Mech. Anal., 221 (2016), 1223-1254. doi: 10.1007/s00205-016-0983-1. Google Scholar

[30]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704. Google Scholar

[31]

T. Kato and G. Ponce, Well posedness of the Euler and Navier–Stokes equations in the Lebesgues spaces $L^p_s(\mathbb{R}^2)$,, Rev. Mat. Iberoam., 2 (1986), 73-88. doi: 10.4171/RMI/26. Google Scholar

[32] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, 1990. Google Scholar
[33]

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810. Google Scholar

[34]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Communications on Pure and Applied Mathematics, 48 (1995), 501-537. doi: 10.1002/cpa.3160480503. Google Scholar

[35]

F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system,, Arch. Rational Mech. Anal., 154 (2000), 135-156. doi: 10.1007/s002050000102. Google Scholar

[36]

F. Lin and C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130361, 18 pp. doi: 10.1098/rsta.2013.0361. Google Scholar

[37]

F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals,, Chinese Annals of Mathematics, Series B., 31 (2010), 921-938. doi: 10.1007/s11401-010-0612-5. Google Scholar

[38]

F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Comm. Pure Appl. Math., 69 (2016), 1532-1571. doi: 10.1002/cpa.21583. Google Scholar

[39]

F. LinJ. Lin and C. Wang, Liquid crystals in two dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297-336. doi: 10.1007/s00205-009-0278-x. Google Scholar

[40]

C. Liu and N. J. Walkington, Approximation of liquid crystal flows,, SIAM J. Numer. Anal., 37 (2000), 725-741. doi: 10.1137/S0036142997327282. Google Scholar

[41]

R. Mikulevicius, On strong $ \mathrm{H}^{1}_2$-solutions of stochastic Navier-Stokes equation in a bounded domain, SIAM J. Math. Anal., 41 (2009), 1206-1230. doi: 10.1137/0807433747. Google Scholar

[42] E. M. Ouhabaz, Analysis of Heat Equations on Domains,, Volume 31 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, 2005. Google Scholar
[43]

E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 3 (1979), 127-167. doi: 10.1080/17442507908833142. Google Scholar

[44]

E. Pardoux, Equations aux Dérivées Partielles Stochastiques Monotones, Theèse de Doctorat, Université Paris-Sud, 1975. Google Scholar

[45]

F. Sagués and M. San Miguel, Dynamics of Fréedericksz transition in a fluctuating magnetic field,, Phys. Rev. A., 32 (1985), 1843-1851. Google Scholar

[46]

M. San Miguel, Nematic liquid crystals in a stochastic magnetic field: Spatial correlations, Phys. Rev. A, 32 (1985), 3811-3813. Google Scholar

[47]

S. Shkoller, Well-posedness and global attractors for liquid crystal on Riemannian manifolds,, Communication in Partial Differential Equations, 27 (2002), 1103-1137. doi: 10.1081/PDE-120004895. Google Scholar

[48]

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. Google Scholar

[49]

M. Wang and W. Wang, Global existence of weak solution for the 2-D Ericksen-Leslie system,, Calc. Var. Partial Differential Equations, 51 (2014), 915-962. doi: 10.1007/s00526-013-0700-y. Google Scholar

[50]

W. WangP. Zhang and Z. Zhang, Well-posedness of the Ericksen-Leslie system,, Arch. Ration. Mech. Anal., 210 (2013), 837-855. doi: 10.1007/s00205-013-0659-z. Google Scholar

[51]

M. WangW. Wang and Z. Zhang, On the uniqueness of weak solution for the 2-D Ericksen-Leslie system, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 919-941. doi: 10.3934/dcdsb.2016.21.919. Google Scholar

[52]

W. WangP. Zhang and Z. Zhang, The small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equation, Comm. Pure Appl. Math., 68 (2015), 1326-1398. doi: 10.1002/cpa.21549. Google Scholar

[1]

Jishan Fan, Tohru Ozawa. Regularity criteria for a simplified Ericksen-Leslie system modeling the flow of liquid crystals. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 859-867. doi: 10.3934/dcds.2009.25.859

[2]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[3]

Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2-D Ericksen--Leslie system. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 919-941. doi: 10.3934/dcdsb.2016.21.919

[4]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[5]

Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357

[6]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565

[7]

Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381

[8]

Rui Qian, Rong Hu, Ya-Ping Fang. Local smooth representation of solution sets in parametric linear fractional programming problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 45-52. doi: 10.3934/naco.2019004

[9]

Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445

[10]

Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106

[11]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[12]

Apala Majumdar. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1303-1337. doi: 10.3934/cpaa.2012.11.1303

[13]

Shu-Guang Shao, Shu Wang, Wen-Qing Xu, Yu-Li Ge. On the local C1, α solution of ideal magneto-hydrodynamical equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2103-2113. doi: 10.3934/dcds.2017090

[14]

Saeed Ketabchi, Hossein Moosaei, M. Parandegan, Hamidreza Navidi. Computing minimum norm solution of linear systems of equations by the generalized Newton method. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 113-119. doi: 10.3934/naco.2017008

[15]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[16]

Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873

[17]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[18]

Qi S. Zhang. An example of large global smooth solution of 3 dimensional Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5521-5523. doi: 10.3934/dcds.2013.33.5521

[19]

Zhiyuan Geng, Wei Wang, Pingwen Zhang, Zhifei Zhang. Stability of half-degree point defect profiles for 2-D nematic liquid crystal. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6227-6242. doi: 10.3934/dcds.2017269

[20]

Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations & Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (30)
  • HTML views (163)
  • Cited by (0)

[Back to Top]