May  2019, 24(5): 2251-2280. doi: 10.3934/dcdsb.2019094

Chattering and its approximation in control of psoriasis treatment

1. 

Department of Mathematics and Computer Sciences, Texas Woman's University, Denton, TX 76204, USA

2. 

Faculty of Computational Mathematics and Cybernetics, Moscow State Lomonosov University, Moscow, 119992, Russia

* Corresponding author: Ellina Grigorieva

Received  November 2017 Revised  January 2019 Published  March 2019

We consider a nonlinear system of differential equations describing a process of the psoriasis treatment. Its phase variables are the concentrations of T-lymphocytes, keratinocytes and dendritic cells. A scalar bounded control is introduced into this system to reflect the medication dosage. For such a control system, on a given time interval the minimization problem of the Bolza type functional is stated. Its terminal term is the concentration of keratinocytes at the terminal time, and its integral term is the product of the non-negative weighting coefficient with the total cost of the psoriasis treatment. This cost is linear in the control and proportional to the concentration of keratinocytes. For the analysis of such a problem, the Pontryagin maximum principle is used. As a result of this analysis, it is shown that if the weighting coefficient is zero, then the corresponding optimal control can contain a singular arc. We establish that it is a chattering control, and therefore does not make much sense as a type of a medical treatment. If the weighting coefficient is positive, then the corresponding optimal control is bang-bang, and it can be presented as a type of psoriasis treatment. In addition, when this coefficient tends to zero, such optimal controls can be considered as chattering approximations. Therefore, the convergence of these optimal controls, the corresponding optimal solutions of the original system, and the minimum values of the functional are studied. The obtained theoretical results are illustrated by numerical calculations and the corresponding conclusions are made.

Citation: Ellina Grigorieva, Evgenii Khailov. Chattering and its approximation in control of psoriasis treatment. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2251-2280. doi: 10.3934/dcdsb.2019094
References:
[1]

M. H. A. BiswasL. T. Paiva and M. R. de Pinho, A SEIR model for control of infectious diseases with constraints, Math. Biosci. Eng., 11 (2014), 761-784. doi: 10.3934/mbe.2014.11.761. Google Scholar

[2]

F. Bonnans, P. Martinon, D. Giorgi, V. Grélard, S. Maindrault, O. Tissot and J. Liu, BOCOP 2.0.5 - User Guide, February 8, 2017, URL http://bocop.orgGoogle Scholar

[3]

B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Springer, Berlin-Heidelberg-New York, 2003. Google Scholar

[4]

X. CaoA. DattaF. Al Basir and P. K. Roy, Fractional-order model of the disease psoriasis: A control based mathematical approach, J. Syst. Sci. Complex., 29 (2016), 1565-1584. doi: 10.1007/s11424-016-5198-x. Google Scholar

[5]

C. Castilho, Optimal control of an epidemic through educational compaigns, Electron. J. Differ. Eq., 2006 (2006), 1-11. Google Scholar

[6]

B. Chattopadhyay and N. Hui, Immunopathogenesis in psoriasis throuth a density-type mathematical model, WSEAS Transactions on Mathematics, 11 (2012), 440-450. Google Scholar

[7]

A. Datta and P. K. Roy, T-cell proliferation on immunopathogenic mechanism of psoriasis: a control based theoretical approach, Control Cybern., 42 (2013), 365-386. Google Scholar

[8]

A. L. Donchev, Perturbations, Approximations, and Sensitivity Analysis of Optimal Control Systems, Lecture Notes in Control and Information Sciences, vol. 52, Springer-Verlag, Berlin, 1983. doi: 10.1007/BFb0043612. Google Scholar

[9]

R. V. Gamkrelidze, Sliding modes in optimal control theory, P. Steklov Inst. Math., 169 (1986), 180-193. Google Scholar

[10]

A. GandolfiM. Iannelli and G. Marinoschi, An age-structured model of epidermis growth, J. Math. Biol., 62 (2011), 111-141. doi: 10.1007/s00285-010-0330-3. Google Scholar

[11]

E. V. Grigorieva and E. N. Khailov, Optimal intervention strategies for a SEIR control model of Ebola epidemics, Mathematics, 3 (2015), 961-983. Google Scholar

[12]

E. V. Grigorieva and E. N. Khailov, Estimating the number of switchings of the optimal intervention strategies for SEIR control model of Ebola epidemics, Pure and Applied Functional Analysis, 1 (2016), 541-572. Google Scholar

[13]

E.V. GrigorievaP.B. Deignan and E.N. Khailov, Optimal control problem for a SEIR type model of Ebola epidemics, Revista de Matemática: Teoria y Aplicaciones, 24 (2017), 79-96. doi: 10.15517/rmta.v24i1.27771. Google Scholar

[14]

E. Grigorieva, P. Deignan and E. Khailov, Optimal treatment strategies for control model of psoriasis, in Proceedings of the SIAM Conference on Control and its Applications (CT17), Pittsburgh, Pensylvania, USA, July 10-12, (2017), 86-93. doi: 10.1137/1.9781611975024.12. Google Scholar

[15]

J. E. GudjonssonA. JohnstonH. Sigmundsdottir and H. Valdimarsson, Immunopathogenic mechanisms in psoriasis, Clin. Exp. Immunol., 135 (2004), 1-8. doi: 10.1111/j.1365-2249.2004.02310.x. Google Scholar

[16]

P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New York, 1964. Google Scholar

[17]

H. R. Joshi, S. Lenhart, M. Y. Li and L. Wang, Optimal control methods applied to disease models, in AMS Volume on Mathematical Studies on Human Disease Dynamics: Emerging Paradigms and Challenges, AMS Contemporary Mathematics Series, 410 (2006), 187-207. doi: 10.1090/conm/410/07728. Google Scholar

[18]

M. V. Laptev and N. K. Nikulin, Numerical modeling of mutial synchronization of auto-oscillations of epidermal proliferative activity in lesions of psoriasis skin, Biophysics, 54 (2009), 519-524. Google Scholar

[19]

U. Ledzewicz and H. Schättler, On optimal singular controls for a general SIR-model with vaccination and treatment, Discrete Cont. Dyn.-S, 2 (2011), 981-990. Google Scholar

[20]

E. B. Lee and L. Marcus, Foundations of Optimal Control Theory, John Wiley & Sons, New York, 1967. Google Scholar

[21] S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, CRC Press, Taylor & Francis Group, London, 2007. Google Scholar
[22]

M. A. LowesM. Suárez-Fariñas and J. G. Krueger, Immunology of psoriasis, Annu. Rev. Immunol., 32 (2014), 227-255. doi: 10.1146/annurev-immunol-032713-120225. Google Scholar

[23]

L. A. Lusternik and V. J. Sobolev, Elements of Functional Analysis, Gordon and Breach Publishers, Inc., 1961. Google Scholar

[24]

S. L. Mehlis and K. B. Gordon, The immunology of psoriasis and biological immunotherapy, J. Am. Acad. Dermatol., 49 (2003), 44-50. Google Scholar

[25]

R. M. Neilan and S. Lenhart, An introduction to optimal control with an application in disease modeling, in DIMACS Series in Discrete Mathematics, 75 (2010), 67-81. Google Scholar

[26]

G. Niels and N. Karsten, Simulating psoriasis by altering transit amplifying cells, Bioinformatics, 23 (2007), 1309-1312. Google Scholar

[27]

M. S. Nikol'skii, On the convergence of optimal controls in some optimization problems, Moscow University Computational Mathematics and Cybernetics, 1 (2004), 24-31. Google Scholar

[28]

H. B. OzaR. PandeyD. RoperY. Al-NuaimiS. K. Spurgeon and M. Goodfellow, Modelling and finite-time stability analysis of psoriasis pathogenesis, Int. J. Control, 90 (2017), 1664-1677. doi: 10.1080/00207179.2016.1217566. Google Scholar

[29]

M. R. de Pinho, I. Kornienko and H. Maurer, Optimal control of a SEIR model with mixed constraints and $ L_{1} $ cost, in Controllo'2014 - Proceedings of the 11th Portuguese conference on automatic control, Lecture Notes in Electrical Engineering, vol. 321, Springer, Switzerland, 2015, 135-145.Google Scholar

[30]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, Mathematical Theory of Optimal Processes, The Macmillan Co., New York, 1964. Google Scholar

[31]

P. K. RoyJ. Bradra and B. Chattopadhyay, Mathematical modeling on immunopathogenesis in chronic plaque of psoriasis: A theoretical study, Lecture Notes in Engineering and Computer Science, 1 (2010), 550-555. Google Scholar

[32]

P. K. Roy and A. Datta, Negative feedback control may regulate cytokines effect during growth of keratinocytes in the chronic plaque of psoriasis: A mathematical study, International Journal of Applied Mathematics, 25 (2012), 233-254. Google Scholar

[33]

P. K. Roy and A. Datta, Impact of cytokine release in psoriasis: A control based mathematical approach, Journal of Nonlinear Evolution Equations and Applications, 2013 (2013), 23-42. Google Scholar

[34]

P. K. Roy and A. Datta, Impact of perfect drug adherence on immunopathogenic mechanism for dynamical system of psoriasis, Biomath, 2 (2013), article ID 121201, 6pp. doi: 10.11145/j.biomath.2012.12.101. Google Scholar

[35]

N. J. SavillR. Weller and J. A. Sherratt, Mathematical modelling of nitric oxide regulation of Rete Peg formation in psoriasis, J. Theor. Biol., 214 (2002), 1-16. doi: 10.1006/jtbi.2001.2400. Google Scholar

[36]

N. J. Savill, Mathematical models of hierarchically structured cell populations under equilibrium with application to the epidermis, Cell Proliferat., 36 (2003), 1-26. doi: 10.1046/j.1365-2184.2003.00257.x. Google Scholar

[37]

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples, Springer, New York-Heidelberg-Dordrecht-London, 2012. doi: 10.1007/978-1-4614-3834-2. Google Scholar

[38]

H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies. An Application of Geometric Methods, Springer, New York-Heidelberg-Dordrecht-London, 2015. doi: 10.1007/978-1-4939-2972-6. Google Scholar

[39]

J. A. SherrattR. Weller and N. J. Savill, Modelling blood flow regulation by nitric oxide in psoriatic plaques, J. Math. Biol., 64 (2002), 623-641. doi: 10.1006/bulm.2001.0271. Google Scholar

[40]

N.V. Valeyev, C. Hundhausen, Y. Umezawa, N.V. Kotov, G. Williams, A. Clop, C. Ainali, G. Ouzounis, S. Tsoka and F.O. Nestle, A systems model for immune cell interactions unravels the mechanism of inflammation in human skin, PLoS Computational Biology, 6 (2010), e1001024, 1-22. doi: 10.1371/journal.pcbi.1001024. Google Scholar

[41] F. P. Vasil'ev, Optimization Methods, Factorial Press, Moscow, 2002. Google Scholar
[42]

A. Visintin, Strong convergence results related to strict convexity, Commun. Part. Diff. Eq., 9 (1984), 439-466. doi: 10.1080/03605308408820337. Google Scholar

[43]

M. I. Zelikin and V. F. Borisov, Theory of Chattering Control: With Applications to Astronautics, Robotics, Economics and Engineering, Birkhäuser, Boston, 1994. doi: 10.1007/978-1-4612-2702-1. Google Scholar

[44]

M. I. Zelikin and L. F. Zelikina, The deviation of a functional from its optimal value under chattering decreases exponentially as the number of switchings grows, Diff. Equat., 35 (1999), 1489-1493. Google Scholar

[45]

M. I. Zelikin and L. F. Zelikina, Asymptotics of the deviation of a functional from its optimal value when chattering is replaced by a suboptimal regime, Russ. Math. Surv., 54 (1999), 662-664. doi: 10.1070/rm1999v054n03ABEH000174. Google Scholar

[46]

H. ZhangW. HouL. HenrotS. SchnebertM. DumasC. Heusèle and J. Yang, Modelling epidermis homoeostasis and psoriasis pathogenesis, Journal of The Royal Society Interface, 12 (2015), 1-22. doi: 10.1098/rsif.2014.1071. Google Scholar

[47]

J. ZhuE. Trélat and M. Cerf, Planar titling maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering, Discrete Cont. Dyn.-B, 21 (2016), 1347-1388. doi: 10.3934/dcdsb.2016.21.1347. Google Scholar

show all references

References:
[1]

M. H. A. BiswasL. T. Paiva and M. R. de Pinho, A SEIR model for control of infectious diseases with constraints, Math. Biosci. Eng., 11 (2014), 761-784. doi: 10.3934/mbe.2014.11.761. Google Scholar

[2]

F. Bonnans, P. Martinon, D. Giorgi, V. Grélard, S. Maindrault, O. Tissot and J. Liu, BOCOP 2.0.5 - User Guide, February 8, 2017, URL http://bocop.orgGoogle Scholar

[3]

B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Springer, Berlin-Heidelberg-New York, 2003. Google Scholar

[4]

X. CaoA. DattaF. Al Basir and P. K. Roy, Fractional-order model of the disease psoriasis: A control based mathematical approach, J. Syst. Sci. Complex., 29 (2016), 1565-1584. doi: 10.1007/s11424-016-5198-x. Google Scholar

[5]

C. Castilho, Optimal control of an epidemic through educational compaigns, Electron. J. Differ. Eq., 2006 (2006), 1-11. Google Scholar

[6]

B. Chattopadhyay and N. Hui, Immunopathogenesis in psoriasis throuth a density-type mathematical model, WSEAS Transactions on Mathematics, 11 (2012), 440-450. Google Scholar

[7]

A. Datta and P. K. Roy, T-cell proliferation on immunopathogenic mechanism of psoriasis: a control based theoretical approach, Control Cybern., 42 (2013), 365-386. Google Scholar

[8]

A. L. Donchev, Perturbations, Approximations, and Sensitivity Analysis of Optimal Control Systems, Lecture Notes in Control and Information Sciences, vol. 52, Springer-Verlag, Berlin, 1983. doi: 10.1007/BFb0043612. Google Scholar

[9]

R. V. Gamkrelidze, Sliding modes in optimal control theory, P. Steklov Inst. Math., 169 (1986), 180-193. Google Scholar

[10]

A. GandolfiM. Iannelli and G. Marinoschi, An age-structured model of epidermis growth, J. Math. Biol., 62 (2011), 111-141. doi: 10.1007/s00285-010-0330-3. Google Scholar

[11]

E. V. Grigorieva and E. N. Khailov, Optimal intervention strategies for a SEIR control model of Ebola epidemics, Mathematics, 3 (2015), 961-983. Google Scholar

[12]

E. V. Grigorieva and E. N. Khailov, Estimating the number of switchings of the optimal intervention strategies for SEIR control model of Ebola epidemics, Pure and Applied Functional Analysis, 1 (2016), 541-572. Google Scholar

[13]

E.V. GrigorievaP.B. Deignan and E.N. Khailov, Optimal control problem for a SEIR type model of Ebola epidemics, Revista de Matemática: Teoria y Aplicaciones, 24 (2017), 79-96. doi: 10.15517/rmta.v24i1.27771. Google Scholar

[14]

E. Grigorieva, P. Deignan and E. Khailov, Optimal treatment strategies for control model of psoriasis, in Proceedings of the SIAM Conference on Control and its Applications (CT17), Pittsburgh, Pensylvania, USA, July 10-12, (2017), 86-93. doi: 10.1137/1.9781611975024.12. Google Scholar

[15]

J. E. GudjonssonA. JohnstonH. Sigmundsdottir and H. Valdimarsson, Immunopathogenic mechanisms in psoriasis, Clin. Exp. Immunol., 135 (2004), 1-8. doi: 10.1111/j.1365-2249.2004.02310.x. Google Scholar

[16]

P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New York, 1964. Google Scholar

[17]

H. R. Joshi, S. Lenhart, M. Y. Li and L. Wang, Optimal control methods applied to disease models, in AMS Volume on Mathematical Studies on Human Disease Dynamics: Emerging Paradigms and Challenges, AMS Contemporary Mathematics Series, 410 (2006), 187-207. doi: 10.1090/conm/410/07728. Google Scholar

[18]

M. V. Laptev and N. K. Nikulin, Numerical modeling of mutial synchronization of auto-oscillations of epidermal proliferative activity in lesions of psoriasis skin, Biophysics, 54 (2009), 519-524. Google Scholar

[19]

U. Ledzewicz and H. Schättler, On optimal singular controls for a general SIR-model with vaccination and treatment, Discrete Cont. Dyn.-S, 2 (2011), 981-990. Google Scholar

[20]

E. B. Lee and L. Marcus, Foundations of Optimal Control Theory, John Wiley & Sons, New York, 1967. Google Scholar

[21] S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, CRC Press, Taylor & Francis Group, London, 2007. Google Scholar
[22]

M. A. LowesM. Suárez-Fariñas and J. G. Krueger, Immunology of psoriasis, Annu. Rev. Immunol., 32 (2014), 227-255. doi: 10.1146/annurev-immunol-032713-120225. Google Scholar

[23]

L. A. Lusternik and V. J. Sobolev, Elements of Functional Analysis, Gordon and Breach Publishers, Inc., 1961. Google Scholar

[24]

S. L. Mehlis and K. B. Gordon, The immunology of psoriasis and biological immunotherapy, J. Am. Acad. Dermatol., 49 (2003), 44-50. Google Scholar

[25]

R. M. Neilan and S. Lenhart, An introduction to optimal control with an application in disease modeling, in DIMACS Series in Discrete Mathematics, 75 (2010), 67-81. Google Scholar

[26]

G. Niels and N. Karsten, Simulating psoriasis by altering transit amplifying cells, Bioinformatics, 23 (2007), 1309-1312. Google Scholar

[27]

M. S. Nikol'skii, On the convergence of optimal controls in some optimization problems, Moscow University Computational Mathematics and Cybernetics, 1 (2004), 24-31. Google Scholar

[28]

H. B. OzaR. PandeyD. RoperY. Al-NuaimiS. K. Spurgeon and M. Goodfellow, Modelling and finite-time stability analysis of psoriasis pathogenesis, Int. J. Control, 90 (2017), 1664-1677. doi: 10.1080/00207179.2016.1217566. Google Scholar

[29]

M. R. de Pinho, I. Kornienko and H. Maurer, Optimal control of a SEIR model with mixed constraints and $ L_{1} $ cost, in Controllo'2014 - Proceedings of the 11th Portuguese conference on automatic control, Lecture Notes in Electrical Engineering, vol. 321, Springer, Switzerland, 2015, 135-145.Google Scholar

[30]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, Mathematical Theory of Optimal Processes, The Macmillan Co., New York, 1964. Google Scholar

[31]

P. K. RoyJ. Bradra and B. Chattopadhyay, Mathematical modeling on immunopathogenesis in chronic plaque of psoriasis: A theoretical study, Lecture Notes in Engineering and Computer Science, 1 (2010), 550-555. Google Scholar

[32]

P. K. Roy and A. Datta, Negative feedback control may regulate cytokines effect during growth of keratinocytes in the chronic plaque of psoriasis: A mathematical study, International Journal of Applied Mathematics, 25 (2012), 233-254. Google Scholar

[33]

P. K. Roy and A. Datta, Impact of cytokine release in psoriasis: A control based mathematical approach, Journal of Nonlinear Evolution Equations and Applications, 2013 (2013), 23-42. Google Scholar

[34]

P. K. Roy and A. Datta, Impact of perfect drug adherence on immunopathogenic mechanism for dynamical system of psoriasis, Biomath, 2 (2013), article ID 121201, 6pp. doi: 10.11145/j.biomath.2012.12.101. Google Scholar

[35]

N. J. SavillR. Weller and J. A. Sherratt, Mathematical modelling of nitric oxide regulation of Rete Peg formation in psoriasis, J. Theor. Biol., 214 (2002), 1-16. doi: 10.1006/jtbi.2001.2400. Google Scholar

[36]

N. J. Savill, Mathematical models of hierarchically structured cell populations under equilibrium with application to the epidermis, Cell Proliferat., 36 (2003), 1-26. doi: 10.1046/j.1365-2184.2003.00257.x. Google Scholar

[37]

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples, Springer, New York-Heidelberg-Dordrecht-London, 2012. doi: 10.1007/978-1-4614-3834-2. Google Scholar

[38]

H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies. An Application of Geometric Methods, Springer, New York-Heidelberg-Dordrecht-London, 2015. doi: 10.1007/978-1-4939-2972-6. Google Scholar

[39]

J. A. SherrattR. Weller and N. J. Savill, Modelling blood flow regulation by nitric oxide in psoriatic plaques, J. Math. Biol., 64 (2002), 623-641. doi: 10.1006/bulm.2001.0271. Google Scholar

[40]

N.V. Valeyev, C. Hundhausen, Y. Umezawa, N.V. Kotov, G. Williams, A. Clop, C. Ainali, G. Ouzounis, S. Tsoka and F.O. Nestle, A systems model for immune cell interactions unravels the mechanism of inflammation in human skin, PLoS Computational Biology, 6 (2010), e1001024, 1-22. doi: 10.1371/journal.pcbi.1001024. Google Scholar

[41] F. P. Vasil'ev, Optimization Methods, Factorial Press, Moscow, 2002. Google Scholar
[42]

A. Visintin, Strong convergence results related to strict convexity, Commun. Part. Diff. Eq., 9 (1984), 439-466. doi: 10.1080/03605308408820337. Google Scholar

[43]

M. I. Zelikin and V. F. Borisov, Theory of Chattering Control: With Applications to Astronautics, Robotics, Economics and Engineering, Birkhäuser, Boston, 1994. doi: 10.1007/978-1-4612-2702-1. Google Scholar

[44]

M. I. Zelikin and L. F. Zelikina, The deviation of a functional from its optimal value under chattering decreases exponentially as the number of switchings grows, Diff. Equat., 35 (1999), 1489-1493. Google Scholar

[45]

M. I. Zelikin and L. F. Zelikina, Asymptotics of the deviation of a functional from its optimal value when chattering is replaced by a suboptimal regime, Russ. Math. Surv., 54 (1999), 662-664. doi: 10.1070/rm1999v054n03ABEH000174. Google Scholar

[46]

H. ZhangW. HouL. HenrotS. SchnebertM. DumasC. Heusèle and J. Yang, Modelling epidermis homoeostasis and psoriasis pathogenesis, Journal of The Royal Society Interface, 12 (2015), 1-22. doi: 10.1098/rsif.2014.1071. Google Scholar

[47]

J. ZhuE. Trélat and M. Cerf, Planar titling maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering, Discrete Cont. Dyn.-B, 21 (2016), 1347-1388. doi: 10.3934/dcdsb.2016.21.1347. Google Scholar

Figure 1.  Optimal solutions and optimal control for $ \xi = 0 $ (Case B): upper row: $ l_{0}^{*}(t) $, $ k_{0}^{*}(t) $; lower row: $ m_{0}^{*}(t) $, $ u_{0}^{*}(t) $
Figure 2.  Optimal solutions and optimal control for $ \xi = 0 $ (Case B): upper row: $ l_{0}^{*}(t) $, $ k_{0}^{*}(t) $; lower row: $ m_{0}^{*}(t) $, $ u_{0}^{*}(t) $
Figure 3.  Optimal solutions and optimal control for $ \xi = 0.001 $: upper row: $ l_{\xi}^{*}(t) $, $ k_{\xi}^{*}(t) $; lower row: $ m_{\xi}^{*}(t) $, $ u_{\xi}^{*}(t) $
Figure 4.  Optimal solutions and optimal control for $ \xi = 0.000001 $: upper row: $ l_{\xi}^{*}(t) $, $ k_{\xi}^{*}(t) $; lower row: $ m_{\xi}^{*}(t) $, $ u_{\xi}^{*}(t) $
Table 1.  Minimum values $ J_{\xi}^{*} $ of the functional $ J_{\xi}(u) $ and the corresponding numbers of iterations $ M_{\xi} $
$ \xi = 10.0 $ $ \xi = 1.0 $ $ \xi = 0.1 $ $ \xi = 0.01 $
$ J_{\xi}^{*} = 3.030960 $ $ J_{\xi}^{*} = 3.030960 $ $ J_{\xi}^{*} = 3.016830 $ $ J_{\xi}^{*} = 2.905979 $
$ M_{\xi} = 69 $ $ M_{\xi} = 72 $ $ M_{\xi} = 80 $ $ M_{\xi} = 84 $
$ \xi = 0.001 $ $ \xi = 0.0001 $ $ \xi = 0.000001 $
$ J_{\xi}^{*} = 2.867417 $ $ J_{\xi}^{*} = 2.861134 $ $ J_{\xi}^{*} = 2.860158 $
$ M_{\xi} = 128 $ $ M_{\xi} = 206 $ $ M_{\xi} = 286 $
$ \xi = 10.0 $ $ \xi = 1.0 $ $ \xi = 0.1 $ $ \xi = 0.01 $
$ J_{\xi}^{*} = 3.030960 $ $ J_{\xi}^{*} = 3.030960 $ $ J_{\xi}^{*} = 3.016830 $ $ J_{\xi}^{*} = 2.905979 $
$ M_{\xi} = 69 $ $ M_{\xi} = 72 $ $ M_{\xi} = 80 $ $ M_{\xi} = 84 $
$ \xi = 0.001 $ $ \xi = 0.0001 $ $ \xi = 0.000001 $
$ J_{\xi}^{*} = 2.867417 $ $ J_{\xi}^{*} = 2.861134 $ $ J_{\xi}^{*} = 2.860158 $
$ M_{\xi} = 128 $ $ M_{\xi} = 206 $ $ M_{\xi} = 286 $
[1]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[2]

Térence Bayen, Marc Mazade, Francis Mairet. Analysis of an optimal control problem connected to bioprocesses involving a saturated singular arc. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 39-58. doi: 10.3934/dcdsb.2015.20.39

[3]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[4]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[5]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

[6]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[7]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[8]

Fabio Bagagiolo. Optimal control of finite horizon type for a multidimensional delayed switching system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 239-264. doi: 10.3934/dcdsb.2005.5.239

[9]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[10]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[11]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[12]

Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control & Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022

[13]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a phase field system with a possibly singular potential. Mathematical Control & Related Fields, 2016, 6 (1) : 95-112. doi: 10.3934/mcrf.2016.6.95

[14]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations & Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006

[15]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[16]

M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223

[17]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[18]

Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451

[19]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist, Amit K. Sanyal. Embedded geodesic problems and optimal control for matrix Lie groups. Journal of Geometric Mechanics, 2011, 3 (2) : 197-223. doi: 10.3934/jgm.2011.3.197

[20]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (28)
  • HTML views (41)
  • Cited by (0)

Other articles
by authors

[Back to Top]