May  2019, 24(5): 2205-2217. doi: 10.3934/dcdsb.2019091

A simple model of collagen remodeling

1. 

ICM, University of Warsaw, ul. Tyniecka 15/17, 02-630 Warsaw, Poland

2. 

Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland

3. 

Institute of Mathematics, University of Gdańsk, ul. Wita Stwosza 57, 80-308 Gdańsk, Poland

4. 

Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland

* Corresponding author: Zuzanna Szymańska

Received  January 2018 Revised  January 2019 Published  March 2019

Fund Project: G. D. and Z. S. were supported by the National Centre for Research and Development Grant STRATEGMED1/233224/10/NCBR/2014. M. L. was supported by the National Science Centre Poland Grant 2017/25/B/ST1/00051. Z. S. acknowledge the support from the National Science Centre Poland Grant 2017/26/M/ST1/00783

In the present paper we propose and study a simple model of collagen remodeling occurring in latter stage of tendon healing process. The model is an integro-differential equation describing the possibility of an alignment of collagen fibers in a finite time. We show that the solutions may either exist globally in time or blow-up in a finite time depending on initial data. The latter behavior can be related to the healing of injury without the scar formation in a finite time: a full alignment of collagen fibers. We believe that the present model is an essential ingredient of the full description of collagen remodeling.

Citation: Grzegorz Dudziuk, Mirosław Lachowicz, Henryk Leszczyński, Zuzanna Szymańska. A simple model of collagen remodeling. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2205-2217. doi: 10.3934/dcdsb.2019091
References:
[1]

J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology, Birkhäuser, Boston, 2014. doi: 10.1007/978-3-319-05140-6. Google Scholar

[2]

N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems, Math Models Methods Appl Sci., 22 (2012), 1140006, 29pp. doi: 10.1142/S0218202511400069. Google Scholar

[3]

P. K. Beredjiklian, Biologic aspects of flexor tendon laceration and repair, J Bone Joint Surg Am., 85 (2003), 539-550. doi: 10.2106/00004623-200303000-00025. Google Scholar

[4]

J. C. Dallon and J. A. Sherratt, A mathematical model for fibroblast and collagen orientation, Bull Math Biol., 60 (1998), 101-129. doi: 10.1006/bulm.1997.0027. Google Scholar

[5]

J. C. DallonJ. A. Sherratt and P. K. Maini, Mathematical modelling of extracellular matrix dynamics using discrete cells: fiber orientation and tissue regeneration, J Theor Biol., 199 (1999), 449-471. doi: 10.1006/jtbi.1999.0971. Google Scholar

[6]

D. DochevaS. A. MüllerM. Majewski and Ch. H. Evans, Biologics for tendon repair, Adv Drug Deliv Rev., 84 (2015), 222-239. doi: 10.1016/j.addr.2014.11.015. Google Scholar

[7]

E. Geigant and M. Stoll, Bifurcation analysis of an orientational aggregation model, J Math Biol., 46 (2003), 537-563. doi: 10.1007/s00285-002-0187-1. Google Scholar

[8]

L. GerisA. Gerisch and R. C. Schugart, Mathematical modeling in wound healing, bone regeneration and tissue engineering, Acta Biotheor., 58 (2010), 355-367. doi: 10.1007/s10441-010-9112-y. Google Scholar

[9]

K. KangB. PerthameA. Stevens and J. J. L. Velázquez, An integro-differential equation model for alignment and orientational aggregation, J Diff Eqs., 246 (2009), 1387-1421. doi: 10.1016/j.jde.2008.11.006. Google Scholar

[10]

M. LachowiczH. Leszczyński and M. Parisot, A simple kinetic equation of swarm formation: Blow-up and global existence, Appl Math Letters, 57 (2016), 104-107. doi: 10.1016/j.aml.2016.01.008. Google Scholar

[11]

M. LachowiczH. Leszczyński and M. Parisot, Blow-up and global existence for a kinetic equation of swarm formation, Math Models Methods Appl Sci., 27 (2017), 1153-1175. doi: 10.1142/S0218202517400115. Google Scholar

[12]

T. W. LinL. Cardenas and L. J. Soslowsky, Biomechanics of tendon injury and repair, J Biomech., 37 (2004), 865-877. doi: 10.1016/j.jbiomech.2003.11.005. Google Scholar

[13]

S. McDougallJ. C. DallonJ. A. Sherratt and P. K. Maini, Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications, Philos Trans A Math Phys Eng Sci., 364 (2006), 1385-1405. doi: 10.1098/rsta.2006.1773. Google Scholar

[14]

M. O'Brian, Anatomy of tendon, in Tendon Injuries (eds. N. Maffulli, P. Renström and W.B. Leadbetter), Springer-Verlag, (2005), 3–13.Google Scholar

[15]

H. G. OthmerS. R. Dunbar and W. Alt, Models of dispersal in biological systems, J Math Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392. Google Scholar

[16]

M. Parisot and M. Lachowicz, A kinetic model for the formation of swarms with nonlinear interactions, Kinetic & Related Models, 9 (2016), 131-164. doi: 10.3934/krm.2016.9.131. Google Scholar

[17]

P. Sharma and N. Maffulli, Biology of tendon injury: Healing, modeling and remodeling, J Musculoskelet Neuronal Interact., 6 (2006), 181-190. Google Scholar

[18]

J. A. Sherratt and J. D. Murray, Models of epidermal wound healing, Proc Biol Sci., 241 (1990), 29-36. Google Scholar

[19]

J. A. Sherratt and J. C. Dallon, Theoretical models of wound healing: Past successes and future challenges, C R Biol., 325 (2002), 557-564. doi: 10.1016/S1631-0691(02)01464-6. Google Scholar

[20]

R. T. Tranquillo and J. D. Murray, Continuum model of fibroblast-driven wound contraction: Inflammation-mediation, J Theor Biol., 158 (1992), 135-172. doi: 10.1016/S0022-5193(05)80715-5. Google Scholar

[21]

G. YangB. B. Rothrauff and R. S. Tuan, Tendon and ligament regeneration and repair: Clinical relevance and developmental paradigm, Birth Defects Res C Embryo Today., 99 (2013), 203-222. doi: 10.1002/bdrc.21041. Google Scholar

show all references

References:
[1]

J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology, Birkhäuser, Boston, 2014. doi: 10.1007/978-3-319-05140-6. Google Scholar

[2]

N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems, Math Models Methods Appl Sci., 22 (2012), 1140006, 29pp. doi: 10.1142/S0218202511400069. Google Scholar

[3]

P. K. Beredjiklian, Biologic aspects of flexor tendon laceration and repair, J Bone Joint Surg Am., 85 (2003), 539-550. doi: 10.2106/00004623-200303000-00025. Google Scholar

[4]

J. C. Dallon and J. A. Sherratt, A mathematical model for fibroblast and collagen orientation, Bull Math Biol., 60 (1998), 101-129. doi: 10.1006/bulm.1997.0027. Google Scholar

[5]

J. C. DallonJ. A. Sherratt and P. K. Maini, Mathematical modelling of extracellular matrix dynamics using discrete cells: fiber orientation and tissue regeneration, J Theor Biol., 199 (1999), 449-471. doi: 10.1006/jtbi.1999.0971. Google Scholar

[6]

D. DochevaS. A. MüllerM. Majewski and Ch. H. Evans, Biologics for tendon repair, Adv Drug Deliv Rev., 84 (2015), 222-239. doi: 10.1016/j.addr.2014.11.015. Google Scholar

[7]

E. Geigant and M. Stoll, Bifurcation analysis of an orientational aggregation model, J Math Biol., 46 (2003), 537-563. doi: 10.1007/s00285-002-0187-1. Google Scholar

[8]

L. GerisA. Gerisch and R. C. Schugart, Mathematical modeling in wound healing, bone regeneration and tissue engineering, Acta Biotheor., 58 (2010), 355-367. doi: 10.1007/s10441-010-9112-y. Google Scholar

[9]

K. KangB. PerthameA. Stevens and J. J. L. Velázquez, An integro-differential equation model for alignment and orientational aggregation, J Diff Eqs., 246 (2009), 1387-1421. doi: 10.1016/j.jde.2008.11.006. Google Scholar

[10]

M. LachowiczH. Leszczyński and M. Parisot, A simple kinetic equation of swarm formation: Blow-up and global existence, Appl Math Letters, 57 (2016), 104-107. doi: 10.1016/j.aml.2016.01.008. Google Scholar

[11]

M. LachowiczH. Leszczyński and M. Parisot, Blow-up and global existence for a kinetic equation of swarm formation, Math Models Methods Appl Sci., 27 (2017), 1153-1175. doi: 10.1142/S0218202517400115. Google Scholar

[12]

T. W. LinL. Cardenas and L. J. Soslowsky, Biomechanics of tendon injury and repair, J Biomech., 37 (2004), 865-877. doi: 10.1016/j.jbiomech.2003.11.005. Google Scholar

[13]

S. McDougallJ. C. DallonJ. A. Sherratt and P. K. Maini, Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications, Philos Trans A Math Phys Eng Sci., 364 (2006), 1385-1405. doi: 10.1098/rsta.2006.1773. Google Scholar

[14]

M. O'Brian, Anatomy of tendon, in Tendon Injuries (eds. N. Maffulli, P. Renström and W.B. Leadbetter), Springer-Verlag, (2005), 3–13.Google Scholar

[15]

H. G. OthmerS. R. Dunbar and W. Alt, Models of dispersal in biological systems, J Math Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392. Google Scholar

[16]

M. Parisot and M. Lachowicz, A kinetic model for the formation of swarms with nonlinear interactions, Kinetic & Related Models, 9 (2016), 131-164. doi: 10.3934/krm.2016.9.131. Google Scholar

[17]

P. Sharma and N. Maffulli, Biology of tendon injury: Healing, modeling and remodeling, J Musculoskelet Neuronal Interact., 6 (2006), 181-190. Google Scholar

[18]

J. A. Sherratt and J. D. Murray, Models of epidermal wound healing, Proc Biol Sci., 241 (1990), 29-36. Google Scholar

[19]

J. A. Sherratt and J. C. Dallon, Theoretical models of wound healing: Past successes and future challenges, C R Biol., 325 (2002), 557-564. doi: 10.1016/S1631-0691(02)01464-6. Google Scholar

[20]

R. T. Tranquillo and J. D. Murray, Continuum model of fibroblast-driven wound contraction: Inflammation-mediation, J Theor Biol., 158 (1992), 135-172. doi: 10.1016/S0022-5193(05)80715-5. Google Scholar

[21]

G. YangB. B. Rothrauff and R. S. Tuan, Tendon and ligament regeneration and repair: Clinical relevance and developmental paradigm, Birth Defects Res C Embryo Today., 99 (2013), 203-222. doi: 10.1002/bdrc.21041. Google Scholar

Figure 1.  Model simulation for an initial condition with no plateau. Parameters β ≡ 1 and γ = 2 were assumed. Lower panels show a section of the solution at x = 0:0. In our opinion, due to high mass concentration, the last relevant time step of the simulation is t = 15:3
Figure 2.  Model simulation for an initial condition with plateau present for each xD ("truncated tops"). Parameters β ≡ 1 and γ = 2 were assumed. Lower panels show a section of the solution at x = 0:0. Prior to the time t = 30:0, the solution attains a state which undergoes no further visible changes, and as such probably approximates an equilibrium of the model
[1]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[2]

Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907

[3]

Jean-Michel Roquejoffre, Juan-Luis Vázquez. Ignition and propagation in an integro-differential model for spherical flames. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 379-387. doi: 10.3934/dcdsb.2002.2.379

[4]

Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417

[5]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[6]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[7]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[8]

Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191

[9]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[10]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[11]

Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems & Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693

[12]

Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119

[13]

Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015

[14]

Yi Cao, Jianhua Wu, Lihe Wang. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1237-1256. doi: 10.3934/dcds.2019053

[15]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 911-923. doi: 10.3934/dcdss.2020053

[16]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[17]

Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677

[18]

Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026

[19]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[20]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (33)
  • HTML views (39)
  • Cited by (0)

[Back to Top]