# American Institute of Mathematical Sciences

May  2019, 24(5): 2189-2204. doi: 10.3934/dcdsb.2019090

## Proof of the maximum principle for a problem with state constraints by the v-change of time variable

 1 Russian Academy of Sciences, Central Economics and Mathematics Institute, Russia 117418, Moscow, Nakhimovskii prospekt, 47 and Lomonosov Moscow State University, Russia 2 University of Technology and Humanities in Radom, Poland, 26-600 Radom, ul. Malczewskiego 20A, Poland 3 Systems Research Institute, Polish Academy of Sciences, Warszawa 4 Moscow State University of Civil Engineering, Russia

Received  December 2017 Revised  January 2019 Published  March 2019

We give a new proof of the maximum principle for optimal control problems with running state constraints. The proof uses the so-called method of $v-$change of the time variable introduced by Dubovitskii and Milyutin. In this method, the time $t$ is considered as a new state variable satisfying the equation ${\rm d} t/ {\rm d} \tau = v,$ where $v(\tau)\ge0$ is a new control and $\tau$ a new time. Unlike the general $v-$change with an arbitrary $v(\tau),$ we use a piecewise constant $v.$ Every such $v-$change reduces the original problem to a problem in a finite dimensional space, with a continuum number of inequality constrains corresponding to the state constraints. The stationarity conditions in every new problem, being written in terms of the original time $t,$ give a weak* compact set of normalized tuples of Lagrange multipliers. The family of these compacta is centered and thus has a nonempty intersection. An arbitrary tuple of Lagrange multipliers belonging to the latter ensures the maximum principle.

Citation: Andrei V. Dmitruk, Nikolai P. Osmolovskii. Proof of the maximum principle for a problem with state constraints by the v-change of time variable. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2189-2204. doi: 10.3934/dcdsb.2019090
##### References:
 [1] L. Bourdin, Note on Pontryagin maximum principle with running state constraints and smooth dynamics - Proof based on the Ekeland variational principle, arXiv: 1604.04051 [math.OC].Google Scholar [2] A. V. Dmitruk, A. A. Milyutin and N. P. Osmolovsky, Lyusternik's theorem and the theory of extrema, Russian Math. Surveys, 35 (1980), 11-46. Google Scholar [3] A. V. Dmitruk, On the development of Pontryagin's Maximum principle in the works of A.Ya. Dubovitskii and A.A. Milyutin, Control and Cybernetics, 38 (2009), 923-957. Google Scholar [4] A. V. Dmitruk and N. P. Osmolovskii, Necessary conditions for a weak minimum in optimal control problems with integral equations subject to state and mixed constraints, SIAM J. on Control and Optimization, 52 (2014), 3437-3462. doi: 10.1137/130921465. Google Scholar [5] A. V. Dmitruk and N. P. Osmolovskii, On the proof of Pontryagin's Maximum principle by means of needle variations, Journal of Mathematical Sciences, 218 (2016), 581-598. doi: 10.1007/s10958-016-3044-2. Google Scholar [6] A. V. Dmitruk and N. P. Osmolovskii, Variations of the type of $v-$change of time in problems with state constraints, Proc. of the Institute of Mathematics and Mechanics, the Ural Branch of Russian Academy of Sciences, 24 (2018), 76-92 (in Russian). Google Scholar [7] A. V. Dmitruk and N. P. Osmolovskii, A General Lagrange Multipliers Theorem, Constructive Nonsmooth Analysis and Related Topics (CNSA-2017), IEEE Xplore Digital Library, 2017. doi: 10.1109/CNSA.2017.7973951. Google Scholar [8] A. V. Dmitruk and N. P. Osmolovskii., A General Lagrange Multipliers Theorem and Related Questions, Lecture Notes in Economics and Math. Systems, 687 (2018), 165-194. Google Scholar [9] I. Ekeland, Nonconvex minimization problems, Bull. of American Math. Society (New Series), 1 (1979), 443-474. doi: 10.1090/S0273-0979-1979-14595-6. Google Scholar [10] I. V. Girsanov, Lectures on Mathematical Theory of Extremum Problems, Lecture Notes in Economics and Mathematical Systems, 1972. Google Scholar [11] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, North-Holland Publishing Company, Amsterdam, 1979, Russian Edition: Nauka, Moscow, 1974. Google Scholar [12] A. N. Kolmogorov and S. V. Fomin., Elements of the Theory of Functions and Functional Analysis, Dover Books on Mathematics, 1999; Russian 4th Edition: Nauka, Moscow, 1976. Google Scholar [13] A. A. Milyutin, General schemes of necessary conditions for extrema and problems of optimal control, Russian Mathematical Surveys, 25 (1970), 110-116. Google Scholar [14] A. A. Milyutin, Maximum Principle in the General Optimal Control Problem [in Russian], Fizmatlit, Moscow, 2001.Google Scholar [15] A. A. Milyutin, A. V. Dmitruk and N. P. Osmolovsky, Maximum Principle in Optimal Control, Moscow State University, Moscow, 2004 (in Russian).Google Scholar [16] L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Fitzmatgiz, Moscow; English translation: Pergamon Press, New York, 1964. Google Scholar [17] R. Vinter, Optimal Control, Birkhauser, Boston, 2000. Google Scholar [18] A. Ya. Dubovitskii and A. A. Milyutin, Extremum problems in the presence of restrictions, USSR Comput. Math. and Math. Physics, 5 (1965), 1-80. doi: 10.1016/0041-5553(65)90148-5. Google Scholar [19] A. Ya. Dubovitskii and A. A. Milyutin, Translation of Euler's equations, USSR Comput. Math. and Math. Physics, 9 (1969), 37-64. Google Scholar [20] A. Ya. Dubovitskii and A. A. Milyutin, Theory of the maximum principle, Methods of the Theory Of Extremal Problems in Economics (V.L. Levin ed.), Nauka, Moscow, (1981), 6-47 (in Russian, see http://www.milyutin.ru/). Google Scholar [21] Optimal'noe upravlenie [Optimal Control], (N.P. Osmolovskii and V.M. Tikhomirov eds.), Moscow Center for Continuous Mathematical Education (MCCME), Moscow, Russia, 2008 (in Russian).Google Scholar

show all references

##### References:
 [1] L. Bourdin, Note on Pontryagin maximum principle with running state constraints and smooth dynamics - Proof based on the Ekeland variational principle, arXiv: 1604.04051 [math.OC].Google Scholar [2] A. V. Dmitruk, A. A. Milyutin and N. P. Osmolovsky, Lyusternik's theorem and the theory of extrema, Russian Math. Surveys, 35 (1980), 11-46. Google Scholar [3] A. V. Dmitruk, On the development of Pontryagin's Maximum principle in the works of A.Ya. Dubovitskii and A.A. Milyutin, Control and Cybernetics, 38 (2009), 923-957. Google Scholar [4] A. V. Dmitruk and N. P. Osmolovskii, Necessary conditions for a weak minimum in optimal control problems with integral equations subject to state and mixed constraints, SIAM J. on Control and Optimization, 52 (2014), 3437-3462. doi: 10.1137/130921465. Google Scholar [5] A. V. Dmitruk and N. P. Osmolovskii, On the proof of Pontryagin's Maximum principle by means of needle variations, Journal of Mathematical Sciences, 218 (2016), 581-598. doi: 10.1007/s10958-016-3044-2. Google Scholar [6] A. V. Dmitruk and N. P. Osmolovskii, Variations of the type of $v-$change of time in problems with state constraints, Proc. of the Institute of Mathematics and Mechanics, the Ural Branch of Russian Academy of Sciences, 24 (2018), 76-92 (in Russian). Google Scholar [7] A. V. Dmitruk and N. P. Osmolovskii, A General Lagrange Multipliers Theorem, Constructive Nonsmooth Analysis and Related Topics (CNSA-2017), IEEE Xplore Digital Library, 2017. doi: 10.1109/CNSA.2017.7973951. Google Scholar [8] A. V. Dmitruk and N. P. Osmolovskii., A General Lagrange Multipliers Theorem and Related Questions, Lecture Notes in Economics and Math. Systems, 687 (2018), 165-194. Google Scholar [9] I. Ekeland, Nonconvex minimization problems, Bull. of American Math. Society (New Series), 1 (1979), 443-474. doi: 10.1090/S0273-0979-1979-14595-6. Google Scholar [10] I. V. Girsanov, Lectures on Mathematical Theory of Extremum Problems, Lecture Notes in Economics and Mathematical Systems, 1972. Google Scholar [11] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, North-Holland Publishing Company, Amsterdam, 1979, Russian Edition: Nauka, Moscow, 1974. Google Scholar [12] A. N. Kolmogorov and S. V. Fomin., Elements of the Theory of Functions and Functional Analysis, Dover Books on Mathematics, 1999; Russian 4th Edition: Nauka, Moscow, 1976. Google Scholar [13] A. A. Milyutin, General schemes of necessary conditions for extrema and problems of optimal control, Russian Mathematical Surveys, 25 (1970), 110-116. Google Scholar [14] A. A. Milyutin, Maximum Principle in the General Optimal Control Problem [in Russian], Fizmatlit, Moscow, 2001.Google Scholar [15] A. A. Milyutin, A. V. Dmitruk and N. P. Osmolovsky, Maximum Principle in Optimal Control, Moscow State University, Moscow, 2004 (in Russian).Google Scholar [16] L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Fitzmatgiz, Moscow; English translation: Pergamon Press, New York, 1964. Google Scholar [17] R. Vinter, Optimal Control, Birkhauser, Boston, 2000. Google Scholar [18] A. Ya. Dubovitskii and A. A. Milyutin, Extremum problems in the presence of restrictions, USSR Comput. Math. and Math. Physics, 5 (1965), 1-80. doi: 10.1016/0041-5553(65)90148-5. Google Scholar [19] A. Ya. Dubovitskii and A. A. Milyutin, Translation of Euler's equations, USSR Comput. Math. and Math. Physics, 9 (1969), 37-64. Google Scholar [20] A. Ya. Dubovitskii and A. A. Milyutin, Theory of the maximum principle, Methods of the Theory Of Extremal Problems in Economics (V.L. Levin ed.), Nauka, Moscow, (1981), 6-47 (in Russian, see http://www.milyutin.ru/). Google Scholar [21] Optimal'noe upravlenie [Optimal Control], (N.P. Osmolovskii and V.M. Tikhomirov eds.), Moscow Center for Continuous Mathematical Education (MCCME), Moscow, Russia, 2008 (in Russian).Google Scholar
 [1] Cheng Ma, Xun Li, Ka-Fai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semi-infinite programming problems. Journal of Industrial & Management Optimization, 2012, 8 (3) : 705-726. doi: 10.3934/jimo.2012.8.705 [2] Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021 [3] H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557 [4] Yanqun Liu, Ming-Fang Ding. A ladder method for linear semi-infinite programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 397-412. doi: 10.3934/jimo.2014.10.397 [5] Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems & Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317 [6] Jinchuan Zhou, Naihua Xiu, Jein-Shan Chen. Solution properties and error bounds for semi-infinite complementarity problems. Journal of Industrial & Management Optimization, 2013, 9 (1) : 99-115. doi: 10.3934/jimo.2013.9.99 [7] Burcu Özçam, Hao Cheng. A discretization based smoothing method for solving semi-infinite variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 219-233. doi: 10.3934/jimo.2005.1.219 [8] Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017 [9] Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673 [10] Karla L. Cortez, Javier F. Rosenblueth. Normality and uniqueness of Lagrange multipliers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3169-3188. doi: 10.3934/dcds.2018138 [11] Franco Obersnel, Pierpaolo Omari. Multiple bounded variation solutions of a capillarity problem. Conference Publications, 2011, 2011 (Special) : 1129-1137. doi: 10.3934/proc.2011.2011.1129 [12] H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77 [13] Rafael del Rio, Mikhail Kudryavtsev, Luis O. Silva. Inverse problems for Jacobi operators III: Mass-spring perturbations of semi-infinite systems. Inverse Problems & Imaging, 2012, 6 (4) : 599-621. doi: 10.3934/ipi.2012.6.599 [14] Zhi Guo Feng, Kok Lay Teo, Volker Rehbock. A smoothing approach for semi-infinite programming with projected Newton-type algorithm. Journal of Industrial & Management Optimization, 2009, 5 (1) : 141-151. doi: 10.3934/jimo.2009.5.141 [15] Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets. Journal of Industrial & Management Optimization, 2009, 5 (4) : 851-866. doi: 10.3934/jimo.2009.5.851 [16] Igor Chueshov. Remark on an elastic plate interacting with a gas in a semi-infinite tube: Periodic solutions. Evolution Equations & Control Theory, 2016, 5 (4) : 561-566. doi: 10.3934/eect.2016019 [17] Meixia Li, Changyu Wang, Biao Qu. Non-convex semi-infinite min-max optimization with noncompact sets. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1859-1881. doi: 10.3934/jimo.2017022 [18] Xiaodong Fan, Tian Qin. Stability analysis for generalized semi-infinite optimization problems under functional perturbations. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2018201 [19] Azhar Ali Zafar, Khurram Shabbir, Asim Naseem, Muhammad Waqas Ashraf. MHD natural convection boundary-layer flow over a semi-infinite heated plate with arbitrary inclination. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1007-1015. doi: 10.3934/dcdss.2020059 [20] Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739

2018 Impact Factor: 1.008