doi: 10.3934/dcdsb.2019078

Applications of optimal control of a nonconvex sweeping process to optimization of the planar crowd motion model

1. 

Department of Applied Mathematics and Statistics, State University of New York–Korea, Yeonsu-Gu, Incheon 21985, Republic of Korea, Springfield, MO 65801-2604, USA

2. 

Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA

3. 

RUDN University, Moscow 117198, Russia

Received  February 2018 Revised  October 2018 Published  April 2019

Fund Project: Research of this author was partly supported by the MSIT (Ministry of Science and ICT), Korea, under the ICT Consilience Creative Program (IITP-2017-R0346-16- 1007) supervised by the IITP (Institute for Information & Communications Technology Promotion).
Research of this author was partly supported by the US National Science Foundation under grant DMS-1512846, by the US Air Force Office of Scientific Research under grant #15RT0462, and by the RUDN University Program 5-100

This paper concerns optimal control of a nonconvex perturbed sweeping process and its applications to optimization of the planar crowd motion model of traffic equilibria. The obtained theoretical results allow us to investigate a dynamic optimization problem for the microscopic planar crown motion model with finitely many participants and completely solve it analytically in the case of two participants.

Citation: Tan H. Cao, Boris S. Mordukhovich. Applications of optimal control of a nonconvex sweeping process to optimization of the planar crowd motion model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019078
References:
[1]

L. Adam and J. V. Outrata, On optimal control of a sweeping process coupled with an ordinary differential equation, Discrete Contin. Dyn. Syst.–Ser. B, 19 (2014), 2709-2738. doi: 10.3934/dcdsb.2014.19.2709.

[2]

C. E. Arround and G. Colombo, A maximum principle of the controlled sweeping process, Set-Valued Var. Anal., 26 (2018), 607-629. doi: 10.1007/s11228-017-0400-4.

[3]

M. Brokate and P. Krejčí, Optimal control of ODE systems involving a rate independent variational inequality, Discrete Contin. Dyn. Syst.–Ser. B, 18 (2013), 331-348. doi: 10.3934/dcdsb.2013.18.331.

[4]

T. H. Cao and B. S. Mordukhovich, Optimal control of a perturbed sweeping process via discrete approximations, Discrete Contin. Dyn. Sysy.–Ser. B, 21 (2016), 3331-3358. doi: 10.3934/dcdsb.2016100.

[5]

T. H. Cao and B. S. Mordukhovich, Optimality conditions for a controlled sweeping process with applications to the crowd motion model, Discrete Contin. Dyn. Syst.-Ser. B, 22 (2017), 267-306. doi: 10.3934/dcdsb.2017014.

[6]

T. H. Cao and B. S. Mordukhovich, Optimal control of a nonconvex perturbed sweeping process, J. Diff. Eqs., 266 (2019), 1003-1050. doi: 10.1016/j.jde.2018.07.066.

[7]

F. H. Clarke, Yu. S Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, 1998.

[8]

G. ColomboR. HenrionN. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process, Dyn. Contin. Discrete Impuls. Syst.–Ser. B, 19 (2012), 117-159.

[9]

G. ColomboR. HenrionN. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process over polyhedral controlled sets, J. Diff. Eqs., 260 (2016), 3397-3447. doi: 10.1016/j.jde.2015.10.039.

[10]

G. Colombo and L. Thibault, Prox-regular sets and applications, Handbook of Nonconvex Analysis, International Press, (2010), 99–182.

[11]

M. d. R. de Pinho, M. M. A. Ferreira and G. V. Smirnov, Optimal control involving sweeping processes, Set-Valued Var. Anal., 2018, 1–26. doi: 10.1007/s11228-018-0501-8.

[12]

T. DonchevE. Farkhi and B. S. Mordukhovich, Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in Hilbert spaces, J. Diff. Eqs., 243 (2007), 301-328. doi: 10.1016/j.jde.2007.05.011.

[13]

J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program., 104 (2005), 347-373. doi: 10.1007/s10107-005-0619-y.

[14]

P. E. Kloeden and E. Platen., Numerical Solution of Stochastic Differential Equations., Springer, 1992. doi: 10.1007/978-3-662-12616-5.

[15]

B. Maury and J. Venel, A discrete model for crowd motion, ESAIM: M2AN, 45 (2011), 145-168. doi: 10.1051/m2an/2010035.

[16]

B. S. Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for differential inclusions, SIAM J. Control Optim., 33 (1995), 882-915. doi: 10.1137/S0363012993245665.

[17]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Ⅰ: Basic Theory, Springer, 2006.

[18]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Ⅱ: Applications, Springer, 2006.

[19]

J. J. Moreau, On unilateral constraints, friction and plasticity, New Variational Techniques in Mathematical Physics, Proceedings of C.I.M.E. Summer Schools, pages 173–322. Cremonese, 1974.

[20]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.

[21]

A. A. Tolstonogov, Control sweeping process, J. Convex Anal., 23 (2016), 1099-1123.

[22]

J. Venel, A numerical scheme for a class of sweeping process, Numerische Mathematik, 118 (2011), 367-400. doi: 10.1007/s00211-010-0329-0.

[23]

R. B. Vinter, Optimal Control, Birkhaüser, 2000.

show all references

References:
[1]

L. Adam and J. V. Outrata, On optimal control of a sweeping process coupled with an ordinary differential equation, Discrete Contin. Dyn. Syst.–Ser. B, 19 (2014), 2709-2738. doi: 10.3934/dcdsb.2014.19.2709.

[2]

C. E. Arround and G. Colombo, A maximum principle of the controlled sweeping process, Set-Valued Var. Anal., 26 (2018), 607-629. doi: 10.1007/s11228-017-0400-4.

[3]

M. Brokate and P. Krejčí, Optimal control of ODE systems involving a rate independent variational inequality, Discrete Contin. Dyn. Syst.–Ser. B, 18 (2013), 331-348. doi: 10.3934/dcdsb.2013.18.331.

[4]

T. H. Cao and B. S. Mordukhovich, Optimal control of a perturbed sweeping process via discrete approximations, Discrete Contin. Dyn. Sysy.–Ser. B, 21 (2016), 3331-3358. doi: 10.3934/dcdsb.2016100.

[5]

T. H. Cao and B. S. Mordukhovich, Optimality conditions for a controlled sweeping process with applications to the crowd motion model, Discrete Contin. Dyn. Syst.-Ser. B, 22 (2017), 267-306. doi: 10.3934/dcdsb.2017014.

[6]

T. H. Cao and B. S. Mordukhovich, Optimal control of a nonconvex perturbed sweeping process, J. Diff. Eqs., 266 (2019), 1003-1050. doi: 10.1016/j.jde.2018.07.066.

[7]

F. H. Clarke, Yu. S Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, 1998.

[8]

G. ColomboR. HenrionN. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process, Dyn. Contin. Discrete Impuls. Syst.–Ser. B, 19 (2012), 117-159.

[9]

G. ColomboR. HenrionN. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process over polyhedral controlled sets, J. Diff. Eqs., 260 (2016), 3397-3447. doi: 10.1016/j.jde.2015.10.039.

[10]

G. Colombo and L. Thibault, Prox-regular sets and applications, Handbook of Nonconvex Analysis, International Press, (2010), 99–182.

[11]

M. d. R. de Pinho, M. M. A. Ferreira and G. V. Smirnov, Optimal control involving sweeping processes, Set-Valued Var. Anal., 2018, 1–26. doi: 10.1007/s11228-018-0501-8.

[12]

T. DonchevE. Farkhi and B. S. Mordukhovich, Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in Hilbert spaces, J. Diff. Eqs., 243 (2007), 301-328. doi: 10.1016/j.jde.2007.05.011.

[13]

J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program., 104 (2005), 347-373. doi: 10.1007/s10107-005-0619-y.

[14]

P. E. Kloeden and E. Platen., Numerical Solution of Stochastic Differential Equations., Springer, 1992. doi: 10.1007/978-3-662-12616-5.

[15]

B. Maury and J. Venel, A discrete model for crowd motion, ESAIM: M2AN, 45 (2011), 145-168. doi: 10.1051/m2an/2010035.

[16]

B. S. Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for differential inclusions, SIAM J. Control Optim., 33 (1995), 882-915. doi: 10.1137/S0363012993245665.

[17]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Ⅰ: Basic Theory, Springer, 2006.

[18]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Ⅱ: Applications, Springer, 2006.

[19]

J. J. Moreau, On unilateral constraints, friction and plasticity, New Variational Techniques in Mathematical Physics, Proceedings of C.I.M.E. Summer Schools, pages 173–322. Cremonese, 1974.

[20]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.

[21]

A. A. Tolstonogov, Control sweeping process, J. Convex Anal., 23 (2016), 1099-1123.

[22]

J. Venel, A numerical scheme for a class of sweeping process, Numerische Mathematik, 118 (2011), 367-400. doi: 10.1007/s00211-010-0329-0.

[23]

R. B. Vinter, Optimal Control, Birkhaüser, 2000.

[1]

Tan H. Cao, Boris S. Mordukhovich. Optimality conditions for a controlled sweeping process with applications to the crowd motion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 267-306. doi: 10.3934/dcdsb.2017014

[2]

Tan H. Cao, Boris S. Mordukhovich. Optimal control of a perturbed sweeping process via discrete approximations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3331-3358. doi: 10.3934/dcdsb.2016100

[3]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[4]

Martin Burger, Peter Alexander Markowich, Jan-Frederik Pietschmann. Continuous limit of a crowd motion and herding model: Analysis and numerical simulations. Kinetic & Related Models, 2011, 4 (4) : 1025-1047. doi: 10.3934/krm.2011.4.1025

[5]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[6]

Riccardo March, Giuseppe Riey. Analysis of a variational model for motion compensated inpainting. Inverse Problems & Imaging, 2017, 11 (6) : 997-1025. doi: 10.3934/ipi.2017046

[7]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[8]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[9]

Dmitrii Rachinskii. On geometric conditions for reduction of the Moreau sweeping process to the Prandtl-Ishlinskii operator. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3361-3386. doi: 10.3934/dcdsb.2018246

[10]

Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101

[11]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[12]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[13]

Majid E. Abbasov. Generalized exhausters: Existence, construction, optimality conditions. Journal of Industrial & Management Optimization, 2015, 11 (1) : 217-230. doi: 10.3934/jimo.2015.11.217

[14]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[15]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[16]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[17]

Volker Rehbock, Iztok Livk. Optimal control of a batch crystallization process. Journal of Industrial & Management Optimization, 2007, 3 (3) : 585-596. doi: 10.3934/jimo.2007.3.585

[18]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[19]

Luong V. Nguyen. A note on optimality conditions for optimal exit time problems. Mathematical Control & Related Fields, 2015, 5 (2) : 291-303. doi: 10.3934/mcrf.2015.5.291

[20]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

2017 Impact Factor: 0.972

Article outline

Figures and Tables

[Back to Top]