• Previous Article
    Maintaining gene expression levels by positive feedback in burst size in the presence of infinitesimal delay
  • DCDS-B Home
  • This Issue
  • Next Article
    Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition
October  2019, 24(10): 5523-5538. doi: 10.3934/dcdsb.2019069

Fully decoupled schemes for the coupled Schrödinger-KdV system

1. 

School of Mathematical Science, Huaiyin Normal University, Huaian, Jiangsu 223300, China

2. 

Department of Basis Education, Jiangsu Vocational College of Finance & Economics, Huaian, Jiangsu, 223003, China

* Corresponding author: cjx1981@hytc.edu.cn (J. Cai)

Received  July 2018 Revised  December 2018 Published  April 2019

Fund Project: The first author is supported by the Natural Science Foundation of Jiangsu Province of China grant BK20181482, Qing Lan Project of Jiangsu Province of China and Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and President

The coupled numerical schemes are inefficient for the time-dependent coupled Schrödinger-KdV system. In this study, some splitting schemes are proposed for the system based on the operator splitting method and coordinate increment discrete gradient method. The schemes are decoupled, so that each of the variables can be solved separately at each time level. Ample numerical experiments are carried out to demonstrate the efficiency and accuracy of our schemes.

Citation: Jiaxiang Cai, Juan Chen, Bin Yang. Fully decoupled schemes for the coupled Schrödinger-KdV system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5523-5538. doi: 10.3934/dcdsb.2019069
References:
[1]

K. O. Aiyesimoju and R. J. Sobey, Process splitting of the boundary conditions for the advection-dispersion equation, Int. J. Numer. Methods Fluids, 9 (1989), 235-244. doi: 10.1002/fld.1650090208. Google Scholar

[2]

P. Amorim and M. Figueira, Convergence of a numerical scheme for a coupled Schrödinger-KdV system, Rev. Mat. Complut., 26 (2013), 409-426. doi: 10.1007/s13163-012-0097-8. Google Scholar

[3]

K. Appert and J. Vaclavik, Dynamics of coupled solitons, Phys. Fluids, 20 (1977), 1845-1849. doi: 10.1063/1.861802. Google Scholar

[4]

U. M. Ascher and R. I. McLachlan, Multisymplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math., 48 (2004), 255-269. doi: 10.1016/j.apnum.2003.09.002. Google Scholar

[5]

D. M. Bai and L. M. Zhang, The finite element method for the coupled Schrödinger-KdV equations, Phys. Lett. A, 373 (2009), 2237-2244. doi: 10.1016/j.physleta.2009.04.043. Google Scholar

[6]

J. CaiC. Bai and H. Zhang, Efficient schemes for the coupled Schrödinger-KdV equations: Decoupled and conserving three invariants, Appl. Math. Lett., 86 (2018), 200-207. doi: 10.1016/j.aml.2018.06.038. Google Scholar

[7]

J. CaiY. Wang and C. Jiang, Local structure-preserving algorithms for general multi-symplectic Hamiltonian PDEs, Comput. Phys. Commun., 235 (2019), 210-220. doi: 10.1016/j.cpc.2018.08.015. Google Scholar

[8]

J. X. CaiC. Z. Bai and H. H. Zhang, Decoupled local/global energy-preserving schemes for the $N$-coupled nonlinear Schrödinger equations, J. Comput. Phys., 374 (2018), 281-299. doi: 10.1016/j.jcp.2018.07.050. Google Scholar

[9]

J. CaiB. Yang and C. Zhang, Efficient mass- and energy-preserving schemes for the coupled nonlinear Schrödinger-Boussinesq system, Appl. Math. Lett., 91 (2019), 76-82. doi: 10.1016/j.aml.2018.11.024. Google Scholar

[10]

J. X. CaiJ. L. HongY. S. Wang and Y. Z. Gong, Two energy-conserved splitting methods for three-dimensional time-domain Maxwell's equations and the convergence analysis, SIAM J. Numer. Anal., 53 (2015), 1918-1940. doi: 10.1137/140971609. Google Scholar

[11]

E. CelledoniV. GrimmR. I. McLachlanD. I. McLarenD. O'NealeB. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical PDEs using the ``Average Vector Field" method, J. Comput. Phys., 231 (2012), 6770-6789. doi: 10.1016/j.jcp.2012.06.022. Google Scholar

[12]

E. Fan, Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method, J. Phys. A: Math. Gen., 35 (2002), 6853-6872. doi: 10.1088/0305-4470/35/32/306. Google Scholar

[13]

A. Golbabai and A. S. Vaighani, A meshless method for numerical solution of the coupled Schrödinger-KdV equations, Computing, 92 (2011), 225-242. doi: 10.1007/s00607-010-0138-4. Google Scholar

[14]

Y. Z. GongJ. Q. Gao and Y. S. Wang, High order Gauss-Seidel schemes for charged particle dynamics, Discrete Cont. Dyn. B, 23 (2018), 573-585. doi: 10.3934/dcdsb.2018034. Google Scholar

[15]

O. Gonzalez and J. C. Simo, On the stability of symplectic and energy-momentum algorithms for nonlinear Hamiltonian systems with symmetry, Comput. Methods Appl. Mech. Eng., 134 (1996), 197-222. doi: 10.1016/0045-7825(96)01009-2. Google Scholar

[16]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer-Verlag, Berlin, 2006. Google Scholar

[17]

M. S. Ismail, F. M. Mosally and K. M. Alamoudi, Petrov-Galerkin method for the coupled nonlinear Schödinger-KdV equation, Abstr. Appl. Anal., 2014 (2014), Art. ID 705204, 8 pp. doi: 10.1155/2014/705204. Google Scholar

[18]

T. Itoh and K. Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients, J. Comput. Phys., 76 (1998), 85-102. doi: 10.1016/0021-9991(88)90132-5. Google Scholar

[19]

R. J. LeVeque, Intermediate boundary conditions for time-split methods applied to hyperbolic partial differential equations, Math. Comput., 47 (1986), 37-54. doi: 10.1090/S0025-5718-1986-0842122-8. Google Scholar

[20]

Y. Q. Liu, R. J. Cheng and H. X. Ge, An element-free Galerkin (EFG) method for numerical solution of the coupled Schrödinger-KdV equations, Chin. Phys. B, 22 (2013), 100204, 9pp. doi: 10.1088/1674-1056/22/10/100204. Google Scholar

[21]

J. E. Marsden and A. Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Phys. D, 4 (1982), 394-406. doi: 10.1016/0167-2789(82)90043-4. Google Scholar

[22]

Ö. Oruc and A. Esen, A Haar wavelet collocation method for coupled nonlinear Schödinger-KdV equations, Int. J. Modern Phys. C, 27 (2016), 1650103, 16pp. doi: 10.1142/S0129183116501035. Google Scholar

[23]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045206, 7pp. doi: 10.1088/1751-8113/41/4/045206. Google Scholar

[24]

M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carolo simulations, Phys. Lett. A, 146 (1990), 319-323. doi: 10.1016/0375-9601(90)90962-N. Google Scholar

[25]

X. P. WangC. J. García-Cervera and W. N. E, A Gauss-Seidel projection method for micromagnetics simulations, J. Comput. Phys., 171 (2001), 357-372. doi: 10.1006/jcph.2001.6793. Google Scholar

[26]

H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), 262-268. doi: 10.1016/0375-9601(90)90092-3. Google Scholar

[27]

Z. Zhang, S. S. Song, X. D. Chen and W. E. Zhou, Average vector field methods for the coupled Schrödinger-KdV equations, Chin. Phys. B, 23 (2014), 070208, 9pp. doi: 10.1088/1674-1056/23/7/070208. Google Scholar

show all references

References:
[1]

K. O. Aiyesimoju and R. J. Sobey, Process splitting of the boundary conditions for the advection-dispersion equation, Int. J. Numer. Methods Fluids, 9 (1989), 235-244. doi: 10.1002/fld.1650090208. Google Scholar

[2]

P. Amorim and M. Figueira, Convergence of a numerical scheme for a coupled Schrödinger-KdV system, Rev. Mat. Complut., 26 (2013), 409-426. doi: 10.1007/s13163-012-0097-8. Google Scholar

[3]

K. Appert and J. Vaclavik, Dynamics of coupled solitons, Phys. Fluids, 20 (1977), 1845-1849. doi: 10.1063/1.861802. Google Scholar

[4]

U. M. Ascher and R. I. McLachlan, Multisymplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math., 48 (2004), 255-269. doi: 10.1016/j.apnum.2003.09.002. Google Scholar

[5]

D. M. Bai and L. M. Zhang, The finite element method for the coupled Schrödinger-KdV equations, Phys. Lett. A, 373 (2009), 2237-2244. doi: 10.1016/j.physleta.2009.04.043. Google Scholar

[6]

J. CaiC. Bai and H. Zhang, Efficient schemes for the coupled Schrödinger-KdV equations: Decoupled and conserving three invariants, Appl. Math. Lett., 86 (2018), 200-207. doi: 10.1016/j.aml.2018.06.038. Google Scholar

[7]

J. CaiY. Wang and C. Jiang, Local structure-preserving algorithms for general multi-symplectic Hamiltonian PDEs, Comput. Phys. Commun., 235 (2019), 210-220. doi: 10.1016/j.cpc.2018.08.015. Google Scholar

[8]

J. X. CaiC. Z. Bai and H. H. Zhang, Decoupled local/global energy-preserving schemes for the $N$-coupled nonlinear Schrödinger equations, J. Comput. Phys., 374 (2018), 281-299. doi: 10.1016/j.jcp.2018.07.050. Google Scholar

[9]

J. CaiB. Yang and C. Zhang, Efficient mass- and energy-preserving schemes for the coupled nonlinear Schrödinger-Boussinesq system, Appl. Math. Lett., 91 (2019), 76-82. doi: 10.1016/j.aml.2018.11.024. Google Scholar

[10]

J. X. CaiJ. L. HongY. S. Wang and Y. Z. Gong, Two energy-conserved splitting methods for three-dimensional time-domain Maxwell's equations and the convergence analysis, SIAM J. Numer. Anal., 53 (2015), 1918-1940. doi: 10.1137/140971609. Google Scholar

[11]

E. CelledoniV. GrimmR. I. McLachlanD. I. McLarenD. O'NealeB. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical PDEs using the ``Average Vector Field" method, J. Comput. Phys., 231 (2012), 6770-6789. doi: 10.1016/j.jcp.2012.06.022. Google Scholar

[12]

E. Fan, Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method, J. Phys. A: Math. Gen., 35 (2002), 6853-6872. doi: 10.1088/0305-4470/35/32/306. Google Scholar

[13]

A. Golbabai and A. S. Vaighani, A meshless method for numerical solution of the coupled Schrödinger-KdV equations, Computing, 92 (2011), 225-242. doi: 10.1007/s00607-010-0138-4. Google Scholar

[14]

Y. Z. GongJ. Q. Gao and Y. S. Wang, High order Gauss-Seidel schemes for charged particle dynamics, Discrete Cont. Dyn. B, 23 (2018), 573-585. doi: 10.3934/dcdsb.2018034. Google Scholar

[15]

O. Gonzalez and J. C. Simo, On the stability of symplectic and energy-momentum algorithms for nonlinear Hamiltonian systems with symmetry, Comput. Methods Appl. Mech. Eng., 134 (1996), 197-222. doi: 10.1016/0045-7825(96)01009-2. Google Scholar

[16]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer-Verlag, Berlin, 2006. Google Scholar

[17]

M. S. Ismail, F. M. Mosally and K. M. Alamoudi, Petrov-Galerkin method for the coupled nonlinear Schödinger-KdV equation, Abstr. Appl. Anal., 2014 (2014), Art. ID 705204, 8 pp. doi: 10.1155/2014/705204. Google Scholar

[18]

T. Itoh and K. Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients, J. Comput. Phys., 76 (1998), 85-102. doi: 10.1016/0021-9991(88)90132-5. Google Scholar

[19]

R. J. LeVeque, Intermediate boundary conditions for time-split methods applied to hyperbolic partial differential equations, Math. Comput., 47 (1986), 37-54. doi: 10.1090/S0025-5718-1986-0842122-8. Google Scholar

[20]

Y. Q. Liu, R. J. Cheng and H. X. Ge, An element-free Galerkin (EFG) method for numerical solution of the coupled Schrödinger-KdV equations, Chin. Phys. B, 22 (2013), 100204, 9pp. doi: 10.1088/1674-1056/22/10/100204. Google Scholar

[21]

J. E. Marsden and A. Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Phys. D, 4 (1982), 394-406. doi: 10.1016/0167-2789(82)90043-4. Google Scholar

[22]

Ö. Oruc and A. Esen, A Haar wavelet collocation method for coupled nonlinear Schödinger-KdV equations, Int. J. Modern Phys. C, 27 (2016), 1650103, 16pp. doi: 10.1142/S0129183116501035. Google Scholar

[23]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045206, 7pp. doi: 10.1088/1751-8113/41/4/045206. Google Scholar

[24]

M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carolo simulations, Phys. Lett. A, 146 (1990), 319-323. doi: 10.1016/0375-9601(90)90962-N. Google Scholar

[25]

X. P. WangC. J. García-Cervera and W. N. E, A Gauss-Seidel projection method for micromagnetics simulations, J. Comput. Phys., 171 (2001), 357-372. doi: 10.1006/jcph.2001.6793. Google Scholar

[26]

H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), 262-268. doi: 10.1016/0375-9601(90)90092-3. Google Scholar

[27]

Z. Zhang, S. S. Song, X. D. Chen and W. E. Zhou, Average vector field methods for the coupled Schrödinger-KdV equations, Chin. Phys. B, 23 (2014), 070208, 9pp. doi: 10.1088/1674-1056/23/7/070208. Google Scholar

Figure 1.  The solutions for the CS-KdV system at $ T = 50 $. Solid line: exact solution; Star: numerical solutions
Figure 2.  Top: the errors in solution; Bottom: the changes in invariants
Figure 3.  Left: the maximal error in solution Vs. time step (Red: S-CI-1; Blue: S-CI-2$ \hat{b} $; Square: $ E $; Circle: $ N $); Right: the changes in invariants Vs. time step (Red: S-CI-1; Blue: S-CI-2$ \hat{b} $; Square: $ \mathcal{I}_1 $; Star: $ \mathcal{I}_3 $)
Figure 4.  Left: the maximal error in solution Vs. CPU time (Circle: S-CI-1; Star: S-AVF-2; Square: S-CI-2$ \hat{a} $; Diamond: S-CI-2$ \underline{a} $; Red triangle: AVFS [27])
Figure 5.  The numerical (Star) and exact (solid line) solutions at $ T = 1 $ for the case $ \gamma = 0.1 $
Figure 6.  The numerical (Star) and exact (solid line) solutions at $ T = 1 $ for the case $ \gamma = 1 $
Figure 7.  The errors in solution (top) and the relative changes in invariants (bottom) for the cases $ \gamma = 1 $ (left) and $ \gamma = 10 $ (right), respectively
Figure 8.  The numerical (circle) and exact solutions (solid line) for the case $ \gamma = 10 $
Table 1.  The solution errors for the CS-KdV system (1): $ x\in[-30,30] $, $ \Delta x = 0.5 $, $ \tau = 0.1 $ and $ T = 10 $
Method e2,p e2,q e2,N ${{\rm{e}}_{\infty ,p}}$ ${{\rm{e}}_{\infty ,q}}$ ${{\rm{e}}_{\infty ,N}}$
$\;{\rm{S-CI}}-2\hat a$ 7.16e-3 7.81e-3 1.27e-4 2.98e-3 6.02e-3 1.80e-4
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a}$ 7.16e-3 7.81e-3 1.21e-4 2.98e-3 6.01e-3 1.71e-4
${\rm{S-CI}}-2\hat b$ 7.12e-3 7.75e-3 1.35e-4 3.08e-3 5.95e-3 1.91e-4
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b}$ 7.12e-3 7.75e-3 1.38e-4 3.08e-3 5.95e-3 1.95e-4
AVF[27] 7.13e-3 7.80e-3 3.27e-4 2.95e-3 5.98e-3 1.13e-4
AVFS[27] 7.16e-3 7.81e-3 5.05e-4 2.99e-3 6.01e-3 1.71e-4
EFG[20] 9.28e-3 1.42e-2 2.09e-3 3.45e-3 9.53e-3 7.74e-4
Method e2,p e2,q e2,N ${{\rm{e}}_{\infty ,p}}$ ${{\rm{e}}_{\infty ,q}}$ ${{\rm{e}}_{\infty ,N}}$
$\;{\rm{S-CI}}-2\hat a$ 7.16e-3 7.81e-3 1.27e-4 2.98e-3 6.02e-3 1.80e-4
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a}$ 7.16e-3 7.81e-3 1.21e-4 2.98e-3 6.01e-3 1.71e-4
${\rm{S-CI}}-2\hat b$ 7.12e-3 7.75e-3 1.35e-4 3.08e-3 5.95e-3 1.91e-4
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b}$ 7.12e-3 7.75e-3 1.38e-4 3.08e-3 5.95e-3 1.95e-4
AVF[27] 7.13e-3 7.80e-3 3.27e-4 2.95e-3 5.98e-3 1.13e-4
AVFS[27] 7.16e-3 7.81e-3 5.05e-4 2.99e-3 6.01e-3 1.71e-4
EFG[20] 9.28e-3 1.42e-2 2.09e-3 3.45e-3 9.53e-3 7.74e-4
Table 2.  The maximal solution errors for the CS-KdV system (1): $ x\in[-50,50] $, $ \Delta x = 0.1 $, $ \tau = 0.1 $ and $ T = 8 $
Method ${{\rm{e}}_{\infty ,E}}$ ${{\rm{e}}_{\infty ,N}}$
${\rm{S-CI}}-2\hat a$ 2.15e-4 1.69e-4
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a}$ 1.98e-4 1.61e-4
${\rm{S-CI}}-2\hat b$ 7.41e-5 2.88e-5
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b}$ 7.40e-5 2.68e-5
HW[22] 1.21e-4 1.14e-4
2-order PGM[17] 9.41e-5 2.92e-5
Method ${{\rm{e}}_{\infty ,E}}$ ${{\rm{e}}_{\infty ,N}}$
${\rm{S-CI}}-2\hat a$ 2.15e-4 1.69e-4
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a}$ 1.98e-4 1.61e-4
${\rm{S-CI}}-2\hat b$ 7.41e-5 2.88e-5
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b}$ 7.40e-5 2.68e-5
HW[22] 1.21e-4 1.14e-4
2-order PGM[17] 9.41e-5 2.92e-5
Table 3.  The maximal solution errors for CS-KdV system (1): $ x\in[-50,50] $, $ \Delta x = 0.1 $, $ \tau = 0.0001 $ and $ T = 0.1 $
Method ${{\rm{e}}_{\infty ,E}}$ ${{\rm{e}}_{\infty ,N}}$
${\rm{S-CI}}-2\hat b$ 1.73e-5 2.57e-10
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b}$ 1.73e-5 2.57e-10
4-order RK-PGM[17] 4.73e-5 5.65e-8
Method ${{\rm{e}}_{\infty ,E}}$ ${{\rm{e}}_{\infty ,N}}$
${\rm{S-CI}}-2\hat b$ 1.73e-5 2.57e-10
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b}$ 1.73e-5 2.57e-10
4-order RK-PGM[17] 4.73e-5 5.65e-8
[1]

Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146

[2]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[3]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[4]

Raffaele D’Ambrosio, Giuseppe De Martino, Beatrice Paternoster. A symmetric nearly preserving general linear method for Hamiltonian problems. Conference Publications, 2015, 2015 (special) : 330-339. doi: 10.3934/proc.2015.0330

[5]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[6]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic & Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

[7]

Hector D. Ceniceros. A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2002, 1 (1) : 1-18. doi: 10.3934/cpaa.2002.1.1

[8]

J. Colliander, M. Keel, Gigliola Staffilani, H. Takaoka, T. Tao. Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 665-686. doi: 10.3934/dcds.2008.21.665

[9]

Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 19-54. doi: 10.3934/dcdsb.2018104

[10]

Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070

[11]

Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239

[12]

In-Jee Jeong, Benoit Pausader. Discrete Schrödinger equation and ill-posedness for the Euler equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 281-293. doi: 10.3934/dcds.2017012

[13]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[14]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[15]

Qin Sheng, David A. Voss, Q. M. Khaliq. An adaptive splitting algorithm for the sine-Gordon equation. Conference Publications, 2005, 2005 (Special) : 792-797. doi: 10.3934/proc.2005.2005.792

[16]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

[17]

Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806

[18]

Richard A. Norton, David I. McLaren, G. R. W. Quispel, Ari Stern, Antonella Zanna. Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2079-2098. doi: 10.3934/dcds.2015.35.2079

[19]

Sandra Lucente, Eugenio Montefusco. Non-hamiltonian Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 761-770. doi: 10.3934/dcdss.2013.6.761

[20]

Matthias Erbar, Max Fathi, Vaios Laschos, André Schlichting. Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6799-6833. doi: 10.3934/dcds.2016096

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (35)
  • HTML views (279)
  • Cited by (0)

Other articles
by authors

[Back to Top]