• Previous Article
    Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph
  • DCDS-B Home
  • This Issue
  • Next Article
    Modelling the effects of contaminated environments in mainland China on seasonal HFMD infections and the potential benefit of a pulse vaccination strategy
doi: 10.3934/dcdsb.2019066

Emergence of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetics

School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

* Corresponding author

Received  June 2018 Revised  November 2018 Published  April 2019

Fund Project: The author is supported by National Natural Science Foundation of China (No.11701290), Natural Science Youth Foundation of JiangSu Province, China(No.BK20170896), Natural Science Research Foundation of JiangSu Province, China(No. 17KJB110012) and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications, China(No. NY217150)

In this paper, a fully parabolic chemotaxis system for two species
$ \begin{eqnarray*} \left\{\begin{array}{lll} u_t = \Delta u-\chi_1\nabla\cdot(u\nabla w)+\mu_1u(1-u-a_1v),\ \ \ &x\in \Omega,\ t>0,\\ v_t = \Delta v-\chi_2\nabla\cdot(v\nabla w)+\mu_2v(1-v-a_2u),\ \ &x\in \Omega,\ t>0,\\ w_t = \Delta w-w+u+v,\ \ &x\in \Omega,\ t>0 \end{array}\right. \end{eqnarray*} $
is considered associated with homogeneous Neumann boundary conditions in a smooth bounded domain
$ \Omega\subset\mathbb{R}^n $
,
$ n\geq3 $
, with parameters
$ \chi_i, \mu_i, a_i>0 $
,
$ i = 1, 2 $
. It is shown that for some low energy initial data, the influence of chemotactic cross-diffusion coupled with proliferation may force some solutions to exceed any given threshold. Further, it is proved that if blow-up happens in a two-species chemotaxis(-growth) system, it is simultaneous for both of the chemotactic species.
Citation: Yan Li. Emergence of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetics. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019066
References:
[1]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583. doi: 10.1512/iumj.2016.65.5776. Google Scholar

[2]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X. Google Scholar

[3]

P. BilerE. E. Espejo and I. Guerra, Blowup in higher dimensional two species chemotactic systems, Commun. Pure Appl. Anal., 12 (2013), 89-98. doi: 10.3934/cpaa.2013.12.89. Google Scholar

[4]

P. Biler and I. Guerra, Blowup and self-similar solutions for two-component drift-diffusion systems, Nonlinear Anal., 75 (2012), 5186-5193. doi: 10.1016/j.na.2012.04.035. Google Scholar

[5]

T. BlackJ. Lankeit and M. Mizukami, On the weakly competitive case in a two-species chemotaxis model, IMA J. Appl. Math., 81 (2016), 860-876. doi: 10.1093/imamat/hxw036. Google Scholar

[6]

C. ConcaE. Espejo and K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in $\Bbb R^2$, European J. Appl. Math., 22 (2011), 553-580. doi: 10.1017/S0956792511000258. Google Scholar

[7]

E. E. Espejo ArenasA. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis, Analysis (Munich), 29 (2009), 317-338. doi: 10.1524/anly.2009.1029. Google Scholar

[8]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3. Google Scholar

[9]

D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270. doi: 10.1007/s00332-010-9082-x. Google Scholar

[10]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363. Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol, 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[12]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), 1158-1191. doi: 10.1016/j.jde.2014.10.016. Google Scholar

[13]

Y. Li and J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29 (2016), 1564-1595. doi: 10.1088/0951-7715/29/5/1564. Google Scholar

[14]

Y. Li and Y. Li, Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species, Nonlinear Anal., 109 (2014), 72-84. doi: 10.1016/j.na.2014.05.021. Google Scholar

[15]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X. Google Scholar

[16]

I. G. PearceM. A. J. ChaplainP. G. SchofieldA. R. A. Anderson and S. F. Hubbard, Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems, J. Math. Biol., 55 (2007), 365-388. doi: 10.1007/s00285-007-0088-4. Google Scholar

[17]

C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014), 1607-1626. doi: 10.1007/s00285-013-0681-7. Google Scholar

[18]

C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a pde-ode system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007. doi: 10.1137/13094058X. Google Scholar

[19]

X. Tang and Y. Tao, Analysis of a chemotaxis model for multi-species host-parasitoid interactions, Appl. Math. Sci., 2 (2008), 1239-1252. Google Scholar

[20]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic keller-segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[21]

J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425. doi: 10.1088/0951-7715/25/5/1413. Google Scholar

[22]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877. doi: 10.1080/03605300701319003. Google Scholar

[23]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[24]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426. Google Scholar

[25]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272. doi: 10.1016/j.jmaa.2011.05.057. Google Scholar

[26]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl. (9), 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[27]

M. Winkler, Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2777-2793. doi: 10.3934/dcdsb.2017135. Google Scholar

[28]

M. Winkler, Finite-time blow-up in low-dimensional keller-segel systems with logistic-type superlinear degradation, Z. Angel. Math. Phy., 69 (2018), Art. 69, 40 pp. doi: 10.1007/s00033-018-0935-8. Google Scholar

[29]

G. Wolansky, Multi-components chemotactic system in the absence of conflicts, European J. Appl. Math., 13 (2002), 641-661. doi: 10.1017/S0956792501004843. Google Scholar

[30]

Q. Zhang and Y. Li, Global existence and asymptotic properties of the solution to a two-species chemotaxis system, J. Math. Anal. Appl., 418 (2014), 47-63. doi: 10.1016/j.jmaa.2014.03.084. Google Scholar

[31]

Q. Zhang and Y. Li, Boundedness in a quasilinear fully parabolic keller–segel system with logistic source, Z. Angew. Math. Phy., 66 (2015), 2473-2484. doi: 10.1007/s00033-015-0532-z. Google Scholar

show all references

References:
[1]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583. doi: 10.1512/iumj.2016.65.5776. Google Scholar

[2]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X. Google Scholar

[3]

P. BilerE. E. Espejo and I. Guerra, Blowup in higher dimensional two species chemotactic systems, Commun. Pure Appl. Anal., 12 (2013), 89-98. doi: 10.3934/cpaa.2013.12.89. Google Scholar

[4]

P. Biler and I. Guerra, Blowup and self-similar solutions for two-component drift-diffusion systems, Nonlinear Anal., 75 (2012), 5186-5193. doi: 10.1016/j.na.2012.04.035. Google Scholar

[5]

T. BlackJ. Lankeit and M. Mizukami, On the weakly competitive case in a two-species chemotaxis model, IMA J. Appl. Math., 81 (2016), 860-876. doi: 10.1093/imamat/hxw036. Google Scholar

[6]

C. ConcaE. Espejo and K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in $\Bbb R^2$, European J. Appl. Math., 22 (2011), 553-580. doi: 10.1017/S0956792511000258. Google Scholar

[7]

E. E. Espejo ArenasA. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis, Analysis (Munich), 29 (2009), 317-338. doi: 10.1524/anly.2009.1029. Google Scholar

[8]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3. Google Scholar

[9]

D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270. doi: 10.1007/s00332-010-9082-x. Google Scholar

[10]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363. Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol, 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[12]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), 1158-1191. doi: 10.1016/j.jde.2014.10.016. Google Scholar

[13]

Y. Li and J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29 (2016), 1564-1595. doi: 10.1088/0951-7715/29/5/1564. Google Scholar

[14]

Y. Li and Y. Li, Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species, Nonlinear Anal., 109 (2014), 72-84. doi: 10.1016/j.na.2014.05.021. Google Scholar

[15]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X. Google Scholar

[16]

I. G. PearceM. A. J. ChaplainP. G. SchofieldA. R. A. Anderson and S. F. Hubbard, Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems, J. Math. Biol., 55 (2007), 365-388. doi: 10.1007/s00285-007-0088-4. Google Scholar

[17]

C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014), 1607-1626. doi: 10.1007/s00285-013-0681-7. Google Scholar

[18]

C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a pde-ode system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007. doi: 10.1137/13094058X. Google Scholar

[19]

X. Tang and Y. Tao, Analysis of a chemotaxis model for multi-species host-parasitoid interactions, Appl. Math. Sci., 2 (2008), 1239-1252. Google Scholar

[20]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic keller-segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[21]

J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425. doi: 10.1088/0951-7715/25/5/1413. Google Scholar

[22]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877. doi: 10.1080/03605300701319003. Google Scholar

[23]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[24]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426. Google Scholar

[25]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272. doi: 10.1016/j.jmaa.2011.05.057. Google Scholar

[26]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl. (9), 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[27]

M. Winkler, Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2777-2793. doi: 10.3934/dcdsb.2017135. Google Scholar

[28]

M. Winkler, Finite-time blow-up in low-dimensional keller-segel systems with logistic-type superlinear degradation, Z. Angel. Math. Phy., 69 (2018), Art. 69, 40 pp. doi: 10.1007/s00033-018-0935-8. Google Scholar

[29]

G. Wolansky, Multi-components chemotactic system in the absence of conflicts, European J. Appl. Math., 13 (2002), 641-661. doi: 10.1017/S0956792501004843. Google Scholar

[30]

Q. Zhang and Y. Li, Global existence and asymptotic properties of the solution to a two-species chemotaxis system, J. Math. Anal. Appl., 418 (2014), 47-63. doi: 10.1016/j.jmaa.2014.03.084. Google Scholar

[31]

Q. Zhang and Y. Li, Boundedness in a quasilinear fully parabolic keller–segel system with logistic source, Z. Angew. Math. Phy., 66 (2015), 2473-2484. doi: 10.1007/s00033-015-0532-z. Google Scholar

[1]

Hai-Yang Jin, Tian Xiang. Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes sytstem with competitive kinetics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1919-1942. doi: 10.3934/dcdsb.2018249

[2]

Youshan Tao, Michael Winkler. Boundedness vs.blow-up in a two-species chemotaxis system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3165-3183. doi: 10.3934/dcdsb.2015.20.3165

[3]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[4]

Alexander Kurganov, Mária Lukáčová-Medvidová. Numerical study of two-species chemotaxis models. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 131-152. doi: 10.3934/dcdsb.2014.19.131

[5]

Xie Li, Yilong Wang. Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2717-2729. doi: 10.3934/dcdsb.2017132

[6]

Casimir Emako, Luís Neves de Almeida, Nicolas Vauchelet. Existence and diffusive limit of a two-species kinetic model of chemotaxis. Kinetic & Related Models, 2015, 8 (2) : 359-380. doi: 10.3934/krm.2015.8.359

[7]

Tai-Chia Lin, Zhi-An Wang. Development of traveling waves in an interacting two-species chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2907-2927. doi: 10.3934/dcds.2014.34.2907

[8]

Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220

[9]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[10]

Maria Antonietta Farina, Monica Marras, Giuseppe Viglialoro. On explicit lower bounds and blow-up times in a model of chemotaxis. Conference Publications, 2015, 2015 (special) : 409-417. doi: 10.3934/proc.2015.0409

[11]

Chueh-Hsin Chang, Chiun-Chuan Chen. Travelling wave solutions of a free boundary problem for a two-species competitive model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1065-1074. doi: 10.3934/cpaa.2013.12.1065

[12]

C. Brändle, F. Quirós, Julio D. Rossi. Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary. Communications on Pure & Applied Analysis, 2005, 4 (3) : 523-536. doi: 10.3934/cpaa.2005.4.523

[13]

Lan Qiao, Sining Zheng. Non-simultaneous blow-up for heat equations with positive-negative sources and coupled boundary flux. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1113-1129. doi: 10.3934/cpaa.2007.6.1113

[14]

Xinyu Tu, Chunlai Mu, Pan Zheng, Ke Lin. Global dynamics in a two-species chemotaxis-competition system with two signals. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3617-3636. doi: 10.3934/dcds.2018156

[15]

Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097

[16]

Ke Lin, Chunlai Mu. Convergence of global and bounded solutions of a two-species chemotaxis model with a logistic source. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2233-2260. doi: 10.3934/dcdsb.2017094

[17]

Tahir Bachar Issa, Rachidi Bolaji Salako. Asymptotic dynamics in a two-species chemotaxis model with non-local terms. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3839-3874. doi: 10.3934/dcdsb.2017193

[18]

Masaaki Mizukami. Improvement of conditions for asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 269-278. doi: 10.3934/dcdss.2020015

[19]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[20]

Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299

2018 Impact Factor: 1.008

Article outline

[Back to Top]