doi: 10.3934/dcdsb.2019047

Trajectory and global attractors for generalized processes

1. 

Departamento de Matemática, Centro de Ciências Exatas e de Tecnologia, Universidade Federal de São Carlos, Caixa Postal 676, 13.565-905 São Carlos SP, Brazil

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas. Universidad de Sevilla, c/ Tarfia s/n, 41012-Sevilla, Spain

Dedicated to Peter Kloeden on occasion if his 70th birthday

Received  September 2017 Revised  July 2018 Published  February 2019

Fund Project: This research was partially supported by Programa Ciência sem Fronteiras/CNPq process 200493/2015-9 and CNPq process 140943/2013-7, Ministério da Ciência e Tecnologia, Brazil, by FEDER and Ministerio de Economía y Competitividad under grant MTM2015-63723-P and Junta de Andalucía under Proyecto de Excelencia P12-FQM-1492

In this work the theory of generalized processes is used to describe the dynamics of a nonautonomous multivalued problem and, through this approach, some conditions for the existence of trajectory attractors are proved. By projecting the trajectory attractor on the phase space, the uniform attractor for the multivalued process associated to the problem is obtained and some conditions to guarantee the invariance of the uniform attractor are given. Furthermore, the existence of the uniform attractor for a class of $ p $-Laplacian non-autonomous problems with dynamical boundary conditions is established.

Citation: Rodrigo Samprogna, Cláudia B. Gentile Moussa, Tomás Caraballo, Karina Schiabel. Trajectory and global attractors for generalized processes. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019047
References:
[1]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502. doi: 10.1007/s003329900037.

[2]

J. M. Ball, On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations, J. Differential Equations, 27 (1978), 224-265. doi: 10.1016/0022-0396(78)90032-3.

[3]

R. F. Bass, Real Analysis for Graduate Students: Measure and Integration Theory, Copyright 2011 Richard F. Bass, 2011.

[4]

M. C. BortolanA. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows, J. Differential Equations, 257 (2014), 490-522. doi: 10.1016/j.jde.2014.04.008.

[5]

T. CaraballoJ. A. LangaV. S. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal., 11 (2003), 153-201. doi: 10.1023/A:1022902802385.

[6]

T. CaraballoG. Ƚukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.

[7]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.

[8]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, Non-autonomous dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 703-747. doi: 10.3934/dcdsb.2015.20.703.

[9]

V. Chepyzhov and M. I. Vishik, Trajectory attractors for the 2D Navier-Stokes system and some generalizations, Topol. Methods Nonlinear Anal., 8 (1996), 217-243. doi: 10.12775/TMNA.1996.030.

[10]

V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl. (9), 76 (1997), 913-964. doi: 10.1016/S0021-7824(97)89978-3.

[11]

V. Chepyzhov and M. I, Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49. American Mathematical Society, Providence, RI, 2002.

[12]

V. Chepyzhov and M. I. Vishik, Trajectory and global attractors of the three-dimensional Navier-Stokes system, Math. Notes, 71 (2002), 177-193. doi: 10.1023/A:1014190629738.

[13]

A. Cheskidov and L. Kavlie, Pullback attractors for generalized evolutionary systems, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 749-779. doi: 10.3934/dcdsb.2015.20.749.

[14]

J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364. doi: 10.1080/03605309308820976.

[15]

A. FaviniG. R. GoldsteinJ. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evol. Equ., 2 (2002), 1-19. doi: 10.1007/s00028-002-8077-y.

[16]

C. G. Gal and M. Warma, Well posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions, Differential Integral Equations, 23 (2010), 327-358.

[17]

C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions, J. Differential Equations, 253 (2012), 126-166. doi: 10.1016/j.jde.2012.02.010.

[18]

G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.

[19]

T. Hintermann, Evolution equations with dynamic boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 43-60. doi: 10.1017/S0308210500023945.

[20]

J. Kacur, Nonlinear parabolic equations with the mixed nonlinear and nonstationary boundary conditions, Math. Slovaca, 30 (1980), 213-237.

[21]

O. V. Kapustyan and J. Valero, Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2723-2734. doi: 10.1142/S0218127410027313.

[22]

O. V. Kapustyan and J. Valero, On the Kneser property for the complex Ginzburg-Landau equation and the Lotka-Volterra system with diffusion, J. Math. Anal. Appl., 357 (2009), 254-272. doi: 10.1016/j.jmaa.2009.04.010.

[23]

O. V. Kapustyan, P. O. Kasyanov, J. Valero and M. Z. Zgurovsky, Structure of uniform global attractor for general non-autonomous reaction-diffusion system, Continuous and Distributed Systems, 163–180, Solid Mech. Appl., 211, Springer, Cham, 2014. doi: 10.1007/978-3-319-03146-0_12.

[24]

R. E. Langer, A problem in diffusion or in the flow of heat for a solid in contact with fluid, Tohoku Math. J., 35 (1932), 260-275.

[25]

F. Li and B. You, Pullback attractor for non-autonomous p-Laplacian equations with dynamic flux boundary conditions, Electron. J. Differential Equations, 2014 (2014), No. 74, 11 pp.

[26]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg, 1972.

[27]

H. W. MARCH and W. WEAVER, The diffusion problem for a solid in contact with a stirred fluid, Physical Review, 31 (1928), 1072-1082.

[28]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399.

[29]

V. S. Melnik and J. Valero, On global attractors of multivalued semiprocesses and nonautonomous evolution inclusions, Set-Valued Anal., 8 (2000), 375-403. doi: 10.1023/A:1026514727329.

[30]

L. Popescu and A. Rodríguez-Bernal, On a singularly perturbed wave equation with dynamic boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 389-413. doi: 10.1017/S0308210500003279.

[31] J. C. Robinson, Infinite-dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.
[32]

R. A. Samprogna, K. Schiabel and C. B. Gentile Moussa, Pullback attractors for multivalued process and application to nonautonomous problem with dynamic boundary conditions, Set-Valued and Variational Analysis: theory and applications, accepted for publication, 2017.

[33]

R. A. SamprognaT. CaraballoR. A. Samprogna and T. Caraballo, Pullback attractor for a dynamic boundary non-autonomous problem with infinite delay, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 509-523. doi: 10.3934/dcdsb.2017195.

[34]

J. Simsen and E. Capelato, Some properties for exact generalized processes. Continuous and Distributed Systems. II, 209–219, Stud. Syst. Decis. Control, 30, Springer, Cham, 2015. doi: 10.1007/978-3-319-19075-4_12.

[35]

J. Simsen and C. B. Gentile, On attractors for multivalued semigroups defined by generalized semiflows, Set-Valued Anal., 16 (2008), 105-124. doi: 10.1007/s11228-006-0037-1.

[36]

J. Valero and A. Kapustyan, On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems, J. Math. Anal. Appl., 323 (2006), 614-633. doi: 10.1016/j.jmaa.2005.10.042.

[37] M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations, Lezioni Lincee. [Lincei Lectures] Cambridge University Press, Cambridge, 1992.
[38]

L. YangM. Yang and P. E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2635-2651. doi: 10.3934/dcdsb.2012.17.2635.

[39]

L. YangM. Yang and J. Wu, On uniform attractors for non-autonomous p-Laplacian equation with a dynamic boundary condition, Topol. Methods Nonlinear Anal., 42 (2013), 169-180.

show all references

References:
[1]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502. doi: 10.1007/s003329900037.

[2]

J. M. Ball, On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations, J. Differential Equations, 27 (1978), 224-265. doi: 10.1016/0022-0396(78)90032-3.

[3]

R. F. Bass, Real Analysis for Graduate Students: Measure and Integration Theory, Copyright 2011 Richard F. Bass, 2011.

[4]

M. C. BortolanA. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows, J. Differential Equations, 257 (2014), 490-522. doi: 10.1016/j.jde.2014.04.008.

[5]

T. CaraballoJ. A. LangaV. S. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal., 11 (2003), 153-201. doi: 10.1023/A:1022902802385.

[6]

T. CaraballoG. Ƚukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.

[7]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.

[8]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, Non-autonomous dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 703-747. doi: 10.3934/dcdsb.2015.20.703.

[9]

V. Chepyzhov and M. I. Vishik, Trajectory attractors for the 2D Navier-Stokes system and some generalizations, Topol. Methods Nonlinear Anal., 8 (1996), 217-243. doi: 10.12775/TMNA.1996.030.

[10]

V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl. (9), 76 (1997), 913-964. doi: 10.1016/S0021-7824(97)89978-3.

[11]

V. Chepyzhov and M. I, Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49. American Mathematical Society, Providence, RI, 2002.

[12]

V. Chepyzhov and M. I. Vishik, Trajectory and global attractors of the three-dimensional Navier-Stokes system, Math. Notes, 71 (2002), 177-193. doi: 10.1023/A:1014190629738.

[13]

A. Cheskidov and L. Kavlie, Pullback attractors for generalized evolutionary systems, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 749-779. doi: 10.3934/dcdsb.2015.20.749.

[14]

J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364. doi: 10.1080/03605309308820976.

[15]

A. FaviniG. R. GoldsteinJ. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evol. Equ., 2 (2002), 1-19. doi: 10.1007/s00028-002-8077-y.

[16]

C. G. Gal and M. Warma, Well posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions, Differential Integral Equations, 23 (2010), 327-358.

[17]

C. G. Gal, On a class of degenerate parabolic equations with dynamic boundary conditions, J. Differential Equations, 253 (2012), 126-166. doi: 10.1016/j.jde.2012.02.010.

[18]

G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.

[19]

T. Hintermann, Evolution equations with dynamic boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 43-60. doi: 10.1017/S0308210500023945.

[20]

J. Kacur, Nonlinear parabolic equations with the mixed nonlinear and nonstationary boundary conditions, Math. Slovaca, 30 (1980), 213-237.

[21]

O. V. Kapustyan and J. Valero, Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2723-2734. doi: 10.1142/S0218127410027313.

[22]

O. V. Kapustyan and J. Valero, On the Kneser property for the complex Ginzburg-Landau equation and the Lotka-Volterra system with diffusion, J. Math. Anal. Appl., 357 (2009), 254-272. doi: 10.1016/j.jmaa.2009.04.010.

[23]

O. V. Kapustyan, P. O. Kasyanov, J. Valero and M. Z. Zgurovsky, Structure of uniform global attractor for general non-autonomous reaction-diffusion system, Continuous and Distributed Systems, 163–180, Solid Mech. Appl., 211, Springer, Cham, 2014. doi: 10.1007/978-3-319-03146-0_12.

[24]

R. E. Langer, A problem in diffusion or in the flow of heat for a solid in contact with fluid, Tohoku Math. J., 35 (1932), 260-275.

[25]

F. Li and B. You, Pullback attractor for non-autonomous p-Laplacian equations with dynamic flux boundary conditions, Electron. J. Differential Equations, 2014 (2014), No. 74, 11 pp.

[26]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg, 1972.

[27]

H. W. MARCH and W. WEAVER, The diffusion problem for a solid in contact with a stirred fluid, Physical Review, 31 (1928), 1072-1082.

[28]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399.

[29]

V. S. Melnik and J. Valero, On global attractors of multivalued semiprocesses and nonautonomous evolution inclusions, Set-Valued Anal., 8 (2000), 375-403. doi: 10.1023/A:1026514727329.

[30]

L. Popescu and A. Rodríguez-Bernal, On a singularly perturbed wave equation with dynamic boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 389-413. doi: 10.1017/S0308210500003279.

[31] J. C. Robinson, Infinite-dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.
[32]

R. A. Samprogna, K. Schiabel and C. B. Gentile Moussa, Pullback attractors for multivalued process and application to nonautonomous problem with dynamic boundary conditions, Set-Valued and Variational Analysis: theory and applications, accepted for publication, 2017.

[33]

R. A. SamprognaT. CaraballoR. A. Samprogna and T. Caraballo, Pullback attractor for a dynamic boundary non-autonomous problem with infinite delay, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 509-523. doi: 10.3934/dcdsb.2017195.

[34]

J. Simsen and E. Capelato, Some properties for exact generalized processes. Continuous and Distributed Systems. II, 209–219, Stud. Syst. Decis. Control, 30, Springer, Cham, 2015. doi: 10.1007/978-3-319-19075-4_12.

[35]

J. Simsen and C. B. Gentile, On attractors for multivalued semigroups defined by generalized semiflows, Set-Valued Anal., 16 (2008), 105-124. doi: 10.1007/s11228-006-0037-1.

[36]

J. Valero and A. Kapustyan, On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems, J. Math. Anal. Appl., 323 (2006), 614-633. doi: 10.1016/j.jmaa.2005.10.042.

[37] M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations, Lezioni Lincee. [Lincei Lectures] Cambridge University Press, Cambridge, 1992.
[38]

L. YangM. Yang and P. E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2635-2651. doi: 10.3934/dcdsb.2012.17.2635.

[39]

L. YangM. Yang and J. Wu, On uniform attractors for non-autonomous p-Laplacian equation with a dynamic boundary condition, Topol. Methods Nonlinear Anal., 42 (2013), 169-180.

[1]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[2]

Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure & Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023

[3]

Jacson Simsen, José Valero. Global attractors for $p$-Laplacian differential inclusions in unbounded domains. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3239-3267. doi: 10.3934/dcdsb.2016096

[4]

Noriaki Yamazaki. Global attractors for non-autonomous multivalued dynamical systems associated with double obstacle problems. Conference Publications, 2003, 2003 (Special) : 935-944. doi: 10.3934/proc.2003.2003.935

[5]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure & Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

[6]

Zhong Tan, Zheng-An Yao. The existence and asymptotic behavior of the evolution p-Laplacian equations with strong nonlinear sources. Communications on Pure & Applied Analysis, 2004, 3 (3) : 475-490. doi: 10.3934/cpaa.2004.3.475

[7]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[8]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[9]

Leszek Gasiński. Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 143-158. doi: 10.3934/dcds.2007.17.143

[10]

Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

[11]

T. F. Ma, M. L. Pelicer. Attractors for weakly damped beam equations with $p$-Laplacian. Conference Publications, 2013, 2013 (special) : 525-534. doi: 10.3934/proc.2013.2013.525

[12]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[13]

Olexiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Mikhail Z. Zgurovsky. Attractors of multivalued semi-flows generated by solutions of optimal control problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1229-1242. doi: 10.3934/dcdsb.2019013

[14]

Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469

[15]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[16]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

[17]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[18]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[19]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[20]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (19)
  • HTML views (164)
  • Cited by (0)

[Back to Top]