• Previous Article
    Partial differential inclusions of transport type with state constraints
  • DCDS-B Home
  • This Issue
  • Next Article
    On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity
March  2019, 24(3): 1297-1307. doi: 10.3934/dcdsb.2019017

Existence of solutions for space-fractional parabolic hemivariational inequalities

1. 

Guangxi Colleges and Universities Key Laboratory of Complex System Optimization, and Big Data Processing, Yulin Normal University, Yulin 537000, China

2. 

Guangxi Colleges and Universities Key Laboratory of Optimization Control, and Engineering Calculation, and College of Sciences, Guangxi University for Nationalities, Nanning, Guangxi 530006, China

3. 

Center for Fundamental Science, and Research Center for Nonlinear Analysis and Optimization, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan

4. 

Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan

* Corresponding authors: zhhliu@hotmail.com(Z.Liu) and cfwen@kmu.edu.tw(C.Wen)

Received  October 2017 Revised  March 2018 Published  January 2019

Fund Project: The work was supported by NNSF of China (No.11671101), NSF of Guangxi (No.2018GXNSFDA138002), the High Level Innovation Team Program from Guangxi Higher Education Institutions of China (No. [2018] 35). This project has received funding from the European Unions Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No.823731 CONMECH

This paper is devoted to the existence of solutions for space-fractional parabolic hemivariational inequalities by means of the well-known surjectivity result for multivalued ($S_+$) type mappings.

Citation: Yongjian Liu, Zhenhai Liu, Ching-Feng Wen. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1297-1307. doi: 10.3934/dcdsb.2019017
References:
[1]

G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions. I. The optimal profile problem, Math. Ann., 310 (1998), 527-560. doi: 10.1007/s002080050159. Google Scholar

[2]

X. Cabre and J. Sola-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732. doi: 10.1002/cpa.20093. Google Scholar

[3]

L. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations, 4 (1979), 1067-1075. doi: 10.1080/03605307908820119. Google Scholar

[4]

L. CaffarelliJ. M. Roquejoffre and Y. Sire, Variational problems in free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179. doi: 10.4171/JEMS/226. Google Scholar

[5]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Annals of Mathematics. Second Series, 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903. Google Scholar

[6]

K. C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129. doi: 10.1016/0022-247X(81)90095-0. Google Scholar

[7]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. Google Scholar

[8]

N. Costea and C. Varga, Systems of nonlinear hemivariational inequalities and applications, Topological Methods in Nonlinear Analysis, 41 (2013), 39-65. Google Scholar

[9]

W. Craig and M. Groves, Hamiltonian long-wave approximations to the water-wave problem, Wave Motion, 19 (1994), 367-389. doi: 10.1016/0165-2125(94)90003-5. Google Scholar

[10]

W. CraigU. Schanz and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincare, Anal. Non Lineaire, 14 (1997), 615-667. doi: 10.1016/S0294-1449(97)80128-X. Google Scholar

[11]

L. Gasinski and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman and Hall/CRC, Boca Raton, London, New York, Washington, DC, 2005. Google Scholar

[12]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands, 1997. doi: 10.1007/978-1-4615-6359-4. Google Scholar

[13]

Z. H. Liu, A class of evolution hamivariational inequalities, Nonlinear Analysis, TMA, 36 (1999), 91-100. doi: 10.1016/S0362-546X(98)00016-9. Google Scholar

[14]

Z. H. Liu, Browder-Tikhonov regularization of non-coercive evolution hemivariational inequalities, Inverse Problems, 21 (2005), 13-20. doi: 10.1088/0266-5611/21/1/002. Google Scholar

[15]

Z. H. Liu, Existence results for quasilinear parabolic hemivariational inequalities, J. Differential Equations, 244 (2008), 1395-1409. doi: 10.1016/j.jde.2007.09.001. Google Scholar

[16]

Z. H. LiuX. W. Li and D. Motreanu, Approximate Controllability for Nonlinear Evolution Hemivariational Inequalities in Hilbert Spaces, SIAM Journal on Control and Optimization, 53 (2015), 3228-3244. doi: 10.1137/140994058. Google Scholar

[17]

Z. H. Liu and X. W. Li, Approximate controllability for a class of hemivariational inequalities, Nonlinear Analysis: Real World Applications, 22 (2015), 581-591. doi: 10.1016/j.nonrwa.2014.08.010. Google Scholar

[18]

Z. H. Liu, Anti-periodic solutions to nonlinear evolution equations, Journal of functional analysis, 258 (2010), 2026-2033. doi: 10.1016/j.jfa.2009.11.018. Google Scholar

[19]

Z. H. Liu and J. Tan, Nonlocal Elliptic Hemivariational inequalities, Electronic Journal of Qualitative Theory of Differential Equations, 66 (2017), 1-7. doi: 10.14232/ejqtde.2017.1.66. Google Scholar

[20]

Z. H. Liu and S. S. Zhang, On the degree theory for multivalued ($S_+$) type mappings, Applied Mathematics and Mechanics, 19 (1998), 1141-1149. doi: 10.1007/BF02456635. Google Scholar

[21]

A. Majda and E. Tabak, A two-dimensional model for quasigeostrophic flow: Comparison with the two-dimensional Euler flow, Nonlinear Phenomena in Ocean Dynamics (Los Alamos, NM, 1995), Phys. D., 98 (1996), 515-522. doi: 10.1016/0167-2789(96)00114-5. Google Scholar

[22]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5. Google Scholar

[23]

D. Motreanu and V. Radulescu, Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems. Nonconvex Optimization and its Applications, 67. Kluwer Academic Publishers, Dordrecht, 2003. doi: 10.1007/978-1-4757-6921-0. Google Scholar

[24]

R. Musina and A. I. Nazarov, Variational inequalities for the spectral fractional Laplacian, Comp. Math. Math. Phy., 57 (2017), 373-386. doi: 10.1134/S0965542517030113. Google Scholar

[25]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[26]

O. Savin and E. Valdinoci, Elliptic PDEs with fibered nonlinearities, J. Geom. Anal., 19 (2009), 420-432. doi: 10.1007/s12220-008-9064-5. Google Scholar

[27]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032. Google Scholar

[28]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Ibero., 29 (2013), 1091-1126. doi: 10.4171/RMI/750. Google Scholar

[29]

A. Signorini, Questioni di elasticita non linearizzata e semilinearizzata, Rendiconti di Matematica e Delle Sue Applicazioni, 18 (1959), 95-139. Google Scholar

[30]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864. doi: 10.1016/j.jfa.2009.01.020. Google Scholar

[31]

J. Stoker, Water Waves: The Mathematical Theory with Applications, Pure and Applied Mathematics, Vol. IV., Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1957. Google Scholar

[32]

J. Tan, Positive solutions for non local elliptic problems, Disc. Cont. Dyna. Sys., 33 (2013), 837-859. doi: 10.3934/dcds.2013.33.837. Google Scholar

[33]

K. Teng, Two nontrivial solutions for hemivariational inequalities driven by nonlocal elliptic operators, Nonlinear Analysis: Real World Applications, 14 (2013), 867-874. doi: 10.1016/j.nonrwa.2012.08.008. Google Scholar

[34]

J. Toland, The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal., 145 (1997), 136-150. doi: 10.1006/jfan.1996.3016. Google Scholar

[35]

L. XiY. Huang and Y. Zhou, The multiplicity of nontrivial solutions for hemivariational inequalities involving nonlocal elliptic operators, Nonlinear Analysis: Real World Applications, 21 (2015), 87-98. doi: 10.1016/j.nonrwa.2014.06.009. Google Scholar

[36]

E. Zeidler, Nonlinear Functional Analysis and Its Applications, II/A and II/B, Springer, New York, 1990. doi: 10.1007/978-1-4612-0985-0. Google Scholar

show all references

References:
[1]

G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions. I. The optimal profile problem, Math. Ann., 310 (1998), 527-560. doi: 10.1007/s002080050159. Google Scholar

[2]

X. Cabre and J. Sola-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732. doi: 10.1002/cpa.20093. Google Scholar

[3]

L. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations, 4 (1979), 1067-1075. doi: 10.1080/03605307908820119. Google Scholar

[4]

L. CaffarelliJ. M. Roquejoffre and Y. Sire, Variational problems in free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179. doi: 10.4171/JEMS/226. Google Scholar

[5]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Annals of Mathematics. Second Series, 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903. Google Scholar

[6]

K. C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129. doi: 10.1016/0022-247X(81)90095-0. Google Scholar

[7]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. Google Scholar

[8]

N. Costea and C. Varga, Systems of nonlinear hemivariational inequalities and applications, Topological Methods in Nonlinear Analysis, 41 (2013), 39-65. Google Scholar

[9]

W. Craig and M. Groves, Hamiltonian long-wave approximations to the water-wave problem, Wave Motion, 19 (1994), 367-389. doi: 10.1016/0165-2125(94)90003-5. Google Scholar

[10]

W. CraigU. Schanz and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincare, Anal. Non Lineaire, 14 (1997), 615-667. doi: 10.1016/S0294-1449(97)80128-X. Google Scholar

[11]

L. Gasinski and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman and Hall/CRC, Boca Raton, London, New York, Washington, DC, 2005. Google Scholar

[12]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands, 1997. doi: 10.1007/978-1-4615-6359-4. Google Scholar

[13]

Z. H. Liu, A class of evolution hamivariational inequalities, Nonlinear Analysis, TMA, 36 (1999), 91-100. doi: 10.1016/S0362-546X(98)00016-9. Google Scholar

[14]

Z. H. Liu, Browder-Tikhonov regularization of non-coercive evolution hemivariational inequalities, Inverse Problems, 21 (2005), 13-20. doi: 10.1088/0266-5611/21/1/002. Google Scholar

[15]

Z. H. Liu, Existence results for quasilinear parabolic hemivariational inequalities, J. Differential Equations, 244 (2008), 1395-1409. doi: 10.1016/j.jde.2007.09.001. Google Scholar

[16]

Z. H. LiuX. W. Li and D. Motreanu, Approximate Controllability for Nonlinear Evolution Hemivariational Inequalities in Hilbert Spaces, SIAM Journal on Control and Optimization, 53 (2015), 3228-3244. doi: 10.1137/140994058. Google Scholar

[17]

Z. H. Liu and X. W. Li, Approximate controllability for a class of hemivariational inequalities, Nonlinear Analysis: Real World Applications, 22 (2015), 581-591. doi: 10.1016/j.nonrwa.2014.08.010. Google Scholar

[18]

Z. H. Liu, Anti-periodic solutions to nonlinear evolution equations, Journal of functional analysis, 258 (2010), 2026-2033. doi: 10.1016/j.jfa.2009.11.018. Google Scholar

[19]

Z. H. Liu and J. Tan, Nonlocal Elliptic Hemivariational inequalities, Electronic Journal of Qualitative Theory of Differential Equations, 66 (2017), 1-7. doi: 10.14232/ejqtde.2017.1.66. Google Scholar

[20]

Z. H. Liu and S. S. Zhang, On the degree theory for multivalued ($S_+$) type mappings, Applied Mathematics and Mechanics, 19 (1998), 1141-1149. doi: 10.1007/BF02456635. Google Scholar

[21]

A. Majda and E. Tabak, A two-dimensional model for quasigeostrophic flow: Comparison with the two-dimensional Euler flow, Nonlinear Phenomena in Ocean Dynamics (Los Alamos, NM, 1995), Phys. D., 98 (1996), 515-522. doi: 10.1016/0167-2789(96)00114-5. Google Scholar

[22]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5. Google Scholar

[23]

D. Motreanu and V. Radulescu, Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems. Nonconvex Optimization and its Applications, 67. Kluwer Academic Publishers, Dordrecht, 2003. doi: 10.1007/978-1-4757-6921-0. Google Scholar

[24]

R. Musina and A. I. Nazarov, Variational inequalities for the spectral fractional Laplacian, Comp. Math. Math. Phy., 57 (2017), 373-386. doi: 10.1134/S0965542517030113. Google Scholar

[25]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[26]

O. Savin and E. Valdinoci, Elliptic PDEs with fibered nonlinearities, J. Geom. Anal., 19 (2009), 420-432. doi: 10.1007/s12220-008-9064-5. Google Scholar

[27]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032. Google Scholar

[28]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Ibero., 29 (2013), 1091-1126. doi: 10.4171/RMI/750. Google Scholar

[29]

A. Signorini, Questioni di elasticita non linearizzata e semilinearizzata, Rendiconti di Matematica e Delle Sue Applicazioni, 18 (1959), 95-139. Google Scholar

[30]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864. doi: 10.1016/j.jfa.2009.01.020. Google Scholar

[31]

J. Stoker, Water Waves: The Mathematical Theory with Applications, Pure and Applied Mathematics, Vol. IV., Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1957. Google Scholar

[32]

J. Tan, Positive solutions for non local elliptic problems, Disc. Cont. Dyna. Sys., 33 (2013), 837-859. doi: 10.3934/dcds.2013.33.837. Google Scholar

[33]

K. Teng, Two nontrivial solutions for hemivariational inequalities driven by nonlocal elliptic operators, Nonlinear Analysis: Real World Applications, 14 (2013), 867-874. doi: 10.1016/j.nonrwa.2012.08.008. Google Scholar

[34]

J. Toland, The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal., 145 (1997), 136-150. doi: 10.1006/jfan.1996.3016. Google Scholar

[35]

L. XiY. Huang and Y. Zhou, The multiplicity of nontrivial solutions for hemivariational inequalities involving nonlocal elliptic operators, Nonlinear Analysis: Real World Applications, 21 (2015), 87-98. doi: 10.1016/j.nonrwa.2014.06.009. Google Scholar

[36]

E. Zeidler, Nonlinear Functional Analysis and Its Applications, II/A and II/B, Springer, New York, 1990. doi: 10.1007/978-1-4612-0985-0. Google Scholar

[1]

O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185

[2]

Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019216

[3]

Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172

[4]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[5]

G. Mastroeni, L. Pellegrini. On the image space analysis for vector variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (1) : 123-132. doi: 10.3934/jimo.2005.1.123

[6]

Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control & Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365

[7]

Gabriele Bonanno, Beatrice Di Bella. Fourth-order hemivariational inequalities. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 729-739. doi: 10.3934/dcdss.2012.5.729

[8]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[9]

Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389

[10]

Leszek Gasiński, Nikolaos S. Papageorgiou. Nonlinear hemivariational inequalities with eigenvalues near zero. Conference Publications, 2005, 2005 (Special) : 317-326. doi: 10.3934/proc.2005.2005.317

[11]

Leszek Gasiński. Existence results for quasilinear hemivariational inequalities at resonance. Conference Publications, 2007, 2007 (Special) : 409-418. doi: 10.3934/proc.2007.2007.409

[12]

Siegfried Carl. Comparison results for a class of quasilinear evolutionary hemivariational inequalities. Conference Publications, 2007, 2007 (Special) : 221-229. doi: 10.3934/proc.2007.2007.221

[13]

Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57

[14]

Vladimir F. Demyanov, Julia A. Ryabova. Exhausters, coexhausters and converters in nonsmooth analysis. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1273-1292. doi: 10.3934/dcds.2011.31.1273

[15]

Stanislaw Migórski, Anna Ochal. Navier-Stokes problems modeled by evolution hemivariational inequalities. Conference Publications, 2007, 2007 (Special) : 731-740. doi: 10.3934/proc.2007.2007.731

[16]

Stanislaw Migórski. A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 117-126. doi: 10.3934/dcdss.2008.1.117

[17]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[18]

Wenxiong Chen, Shijie Qi. Direct methods on fractional equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1269-1310. doi: 10.3934/dcds.2019055

[19]

Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367

[20]

Lorenzo Brasco, Eleonora Cinti. On fractional Hardy inequalities in convex sets. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4019-4040. doi: 10.3934/dcds.2018175

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (51)
  • HTML views (64)
  • Cited by (0)

Other articles
by authors

[Back to Top]