• Previous Article
    Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping
  • DCDS-B Home
  • This Issue
  • Next Article
    Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system
September  2019, 24(9): 4703-4720. doi: 10.3934/dcdsb.2018330

The diffusive model for Aedes aegypti mosquito on a periodically evolving domain

1. 

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

2. 

Key Laboratory of PCBHFASQ, Yangzhou University, Yangzhou 225002, China

* Corresponding author

Received  June 2018 Revised  August 2018 Published  January 2019

Fund Project: The work is partially supported by the NNSF of China (Grant No. 11771381, 61877052)

This paper deals with a reaction-diffusion model on a periodically and isotropically evolving domain in order to explore the diffusive dynamics of Aedes aegypti mosquito, where we divide it into two sub-populations: the winged population and an aquatic form. The spatial-temporal risk index $ R_0(\rho) $ depending on the domain evolution rate $ \rho(t) $ as well as its analytical properties is investigated. The long-time behaviors of the periodic solutions under the condition $ R_0(\rho)>1 $ and $ R_0(\rho)\leq1 $ are explored, respectively. Moreover, we consider the specific case where $ \rho(t)\equiv1 $ to better understand the impact of the periodic evolution rate on the persistence and extinction of Aedes aegypti mosquito. Numerical simulations further verify our analytical results that the periodic domain evolution has a significant impact on the dispersal of Aedes aegypti mosquito.

Citation: Mengyun Zhang, Zhigui Lin. The diffusive model for Aedes aegypti mosquito on a periodically evolving domain. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4703-4720. doi: 10.3934/dcdsb.2018330
References:
[1] D. Acheson, Elementary Fluid Dynamics, Oxford University Press, New York, 1990. Google Scholar
[2]

L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1. Google Scholar

[3]

P. $\acute{A}$lvarez-Caudevilla, Y. H. Du and R. Peng, Qualitative analysis of a cooperative reaction-diffusion system in a spatiotemporally degenerate environment, SIAM J. Math. Anal., 46 (2014), 499-531. doi: 10.1137/13091628X. Google Scholar

[4]

I. Ant$\acute{o}$n and J. L$\acute{o}$pez-G$\acute{o}$mez, The strong maximum principle for cooperative periodic-parabolic systems and the existence of principal eigenvalues, World Congress of Nonlinear Analysts '92, Vol. Ⅰ-Ⅳ (Tampa, FL, 1992), 323-334, de Gruyter, Berlin, 1996. Google Scholar

[5]

N. Baca$\ddot{e}$r and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0. Google Scholar

[6] M. J. Baines, Moving Finite Element, Monographs on Numerical Analysis, Clarendon Press, Oxford, 1994. Google Scholar
[7]

P. A. Bliman, M. S. Aronna, F. C. Coelho and M. A. H. B. da Silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, J. Math. Biol., 76 (2018), 1269-1300. doi: 10.1007/s00285-017-1174-x. Google Scholar

[8]

S. Cauchemez, M. Ledrans, C. Poletto, P.Quenel, H. De Valk, V. Colizza and P. Y. Bo$\ddot{e}$lle, Local and regional spread of chikungunya fever in the Americas, Euro surveill, Biometrika, 19 (2014), 20854.Google Scholar

[9]

E. J. Crampin, E. A. Gaffney and P. K. Maini, Mode-doubling and tripling in reaction-diffusion patterns on growing domains: A piecewise linear model, J. Math. Biol., 44 (2002), 107-128. doi: 10.1007/s002850100112. Google Scholar

[10]

R. H. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343. doi: 10.1016/j.jde.2016.05.025. Google Scholar

[11]

W. W. Ding, R. Peng and L. Wei, The diffusive logistic model with a free boundary in a heterogeneous time-periodic environment, J. Differential Equations, 263 (2017), 2736-2779. doi: 10.1016/j.jde.2017.04.013. Google Scholar

[12]

Y. H. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142. doi: 10.1016/j.jfa.2013.07.016. Google Scholar

[13]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405. doi: 10.1137/090771089. Google Scholar

[14]

D. J. Gubler, Dengue and dengue hemorrhagic fever, Clin. Microb. Rev., 11 (1998), 480-496.Google Scholar

[15]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics, Vol. 247. Longman Sci. Tech., Harlow, 1991. Google Scholar

[16]

D. H. Jiang and Z. C. Wang, The diffusive Logistic equation on periodically evolving domains, J. Math. Anal. Appl., 458 (2018), 93-111. doi: 10.1016/j.jmaa.2017.08.059. Google Scholar

[17]

Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76. doi: 10.1016/j.jmaa.2015.02.051. Google Scholar

[18]

C. X. LeiZ. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014), 145-166. doi: 10.1016/j.jde.2014.03.015. Google Scholar

[19]

C. Li, Y. M. Lu, J. N. Liu and X. X. Wu, Climate change and dengue fever transmission in China: Evidences and challenges, S. Total Environment, 622-623 (2018), 493-501.Google Scholar

[20]

H. C. Li, R. Peng and F. B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913. doi: 10.1016/j.jde.2016.09.044. Google Scholar

[21]

X. Liang, L. Zhang and X. Q. Zhao, Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease), J. Dyn. Diff. Equat., 261 (2016), 340-372. doi: 10.1016/j.jde.2016.03.014. Google Scholar

[22]

Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409. doi: 10.1007/s00285-017-1124-7. Google Scholar

[23]

A. Madzvamuse, Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains, J. Computational Physics, 214 (2006), 239-263. doi: 10.1016/j.jcp.2005.09.012. Google Scholar

[24]

A. Madzvamuse, E. A. Gaffney and P. K. Maini, Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains, J. Math. Biol., 61 (2010), 133-164. doi: 10.1007/s00285-009-0293-4. Google Scholar

[25]

A. Madzvamuse and P. K. Maini, Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains, J. Computational Physics, 225 (2007), 100-119. doi: 10.1016/j.jcp.2006.11.022. Google Scholar

[26]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985), 151-186. doi: 10.1007/BF03167042. Google Scholar

[27]

M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280. Google Scholar

[28]

C. V. Pao, Stability and attractivity of periodic solutions of parabolic systems with time delays, J. Math. Anal. Appl., 304 (2005), 423-450. doi: 10.1016/j.jmaa.2004.09.014. Google Scholar

[29]

R. Peng and X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471. doi: 10.1088/0951-7715/25/5/1451. Google Scholar

[30]

L. T. Takahashi, N. A. Maidana, W. Jr. Castro Ferreira, P. Pulino and H. M. Yang, Mathematical models for the Aedes aegypti dispersal dynamics: travelling waves by wing and wind, Bull. Math. Biol., 67 (2005), 509-528. doi: 10.1016/j.bulm.2004.08.005. Google Scholar

[31]

Q. L. Tang and Z. G. Lin, The asymptotic analysis of an insect dispersal model on a growing domain, J. Math. Anal. Appl., 378 (2011), 649-656. doi: 10.1016/j.jmaa.2011.01.057. Google Scholar

[32]

Q. L. Tang, L. Zhang and Z. G. Lin, Asymptotic profile of species migrating on a growing habitat, Acta Appl. Math., 116 (2011), 227-235. doi: 10.1007/s10440-011-9639-1. Google Scholar

[33]

C. R. Tian and S. G. Ruan, A free boundary problem for Aedes aegypti mosquito invasion, Appl. Math. Model., 46 (2017), 203-217. doi: 10.1016/j.apm.2017.01.050. Google Scholar

[34]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[35]

W. D. Wang and X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. doi: 10.1137/120872942. Google Scholar

[36]

D. Weetman and B. Kamgang, etc, Aedes mosquitoes and aedes-borne arboviruses in africa: Current and future threats, Int. J. Environ. Res. Public Health, 15 (2018), 220.Google Scholar

[37]

X. Q. Zhao, Dynamical Systems in Population Biology. Second Edition, CMS Books in Mathematics/Ouvrages de Math$\acute{e}$matiques de la SMC. Springer, Cham, 2017. doi: 10.1007/978-3-319-56433-3. Google Scholar

show all references

References:
[1] D. Acheson, Elementary Fluid Dynamics, Oxford University Press, New York, 1990. Google Scholar
[2]

L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1. Google Scholar

[3]

P. $\acute{A}$lvarez-Caudevilla, Y. H. Du and R. Peng, Qualitative analysis of a cooperative reaction-diffusion system in a spatiotemporally degenerate environment, SIAM J. Math. Anal., 46 (2014), 499-531. doi: 10.1137/13091628X. Google Scholar

[4]

I. Ant$\acute{o}$n and J. L$\acute{o}$pez-G$\acute{o}$mez, The strong maximum principle for cooperative periodic-parabolic systems and the existence of principal eigenvalues, World Congress of Nonlinear Analysts '92, Vol. Ⅰ-Ⅳ (Tampa, FL, 1992), 323-334, de Gruyter, Berlin, 1996. Google Scholar

[5]

N. Baca$\ddot{e}$r and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0. Google Scholar

[6] M. J. Baines, Moving Finite Element, Monographs on Numerical Analysis, Clarendon Press, Oxford, 1994. Google Scholar
[7]

P. A. Bliman, M. S. Aronna, F. C. Coelho and M. A. H. B. da Silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, J. Math. Biol., 76 (2018), 1269-1300. doi: 10.1007/s00285-017-1174-x. Google Scholar

[8]

S. Cauchemez, M. Ledrans, C. Poletto, P.Quenel, H. De Valk, V. Colizza and P. Y. Bo$\ddot{e}$lle, Local and regional spread of chikungunya fever in the Americas, Euro surveill, Biometrika, 19 (2014), 20854.Google Scholar

[9]

E. J. Crampin, E. A. Gaffney and P. K. Maini, Mode-doubling and tripling in reaction-diffusion patterns on growing domains: A piecewise linear model, J. Math. Biol., 44 (2002), 107-128. doi: 10.1007/s002850100112. Google Scholar

[10]

R. H. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343. doi: 10.1016/j.jde.2016.05.025. Google Scholar

[11]

W. W. Ding, R. Peng and L. Wei, The diffusive logistic model with a free boundary in a heterogeneous time-periodic environment, J. Differential Equations, 263 (2017), 2736-2779. doi: 10.1016/j.jde.2017.04.013. Google Scholar

[12]

Y. H. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142. doi: 10.1016/j.jfa.2013.07.016. Google Scholar

[13]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405. doi: 10.1137/090771089. Google Scholar

[14]

D. J. Gubler, Dengue and dengue hemorrhagic fever, Clin. Microb. Rev., 11 (1998), 480-496.Google Scholar

[15]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics, Vol. 247. Longman Sci. Tech., Harlow, 1991. Google Scholar

[16]

D. H. Jiang and Z. C. Wang, The diffusive Logistic equation on periodically evolving domains, J. Math. Anal. Appl., 458 (2018), 93-111. doi: 10.1016/j.jmaa.2017.08.059. Google Scholar

[17]

Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76. doi: 10.1016/j.jmaa.2015.02.051. Google Scholar

[18]

C. X. LeiZ. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014), 145-166. doi: 10.1016/j.jde.2014.03.015. Google Scholar

[19]

C. Li, Y. M. Lu, J. N. Liu and X. X. Wu, Climate change and dengue fever transmission in China: Evidences and challenges, S. Total Environment, 622-623 (2018), 493-501.Google Scholar

[20]

H. C. Li, R. Peng and F. B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913. doi: 10.1016/j.jde.2016.09.044. Google Scholar

[21]

X. Liang, L. Zhang and X. Q. Zhao, Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease), J. Dyn. Diff. Equat., 261 (2016), 340-372. doi: 10.1016/j.jde.2016.03.014. Google Scholar

[22]

Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409. doi: 10.1007/s00285-017-1124-7. Google Scholar

[23]

A. Madzvamuse, Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains, J. Computational Physics, 214 (2006), 239-263. doi: 10.1016/j.jcp.2005.09.012. Google Scholar

[24]

A. Madzvamuse, E. A. Gaffney and P. K. Maini, Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains, J. Math. Biol., 61 (2010), 133-164. doi: 10.1007/s00285-009-0293-4. Google Scholar

[25]

A. Madzvamuse and P. K. Maini, Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains, J. Computational Physics, 225 (2007), 100-119. doi: 10.1016/j.jcp.2006.11.022. Google Scholar

[26]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985), 151-186. doi: 10.1007/BF03167042. Google Scholar

[27]

M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280. Google Scholar

[28]

C. V. Pao, Stability and attractivity of periodic solutions of parabolic systems with time delays, J. Math. Anal. Appl., 304 (2005), 423-450. doi: 10.1016/j.jmaa.2004.09.014. Google Scholar

[29]

R. Peng and X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471. doi: 10.1088/0951-7715/25/5/1451. Google Scholar

[30]

L. T. Takahashi, N. A. Maidana, W. Jr. Castro Ferreira, P. Pulino and H. M. Yang, Mathematical models for the Aedes aegypti dispersal dynamics: travelling waves by wing and wind, Bull. Math. Biol., 67 (2005), 509-528. doi: 10.1016/j.bulm.2004.08.005. Google Scholar

[31]

Q. L. Tang and Z. G. Lin, The asymptotic analysis of an insect dispersal model on a growing domain, J. Math. Anal. Appl., 378 (2011), 649-656. doi: 10.1016/j.jmaa.2011.01.057. Google Scholar

[32]

Q. L. Tang, L. Zhang and Z. G. Lin, Asymptotic profile of species migrating on a growing habitat, Acta Appl. Math., 116 (2011), 227-235. doi: 10.1007/s10440-011-9639-1. Google Scholar

[33]

C. R. Tian and S. G. Ruan, A free boundary problem for Aedes aegypti mosquito invasion, Appl. Math. Model., 46 (2017), 203-217. doi: 10.1016/j.apm.2017.01.050. Google Scholar

[34]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[35]

W. D. Wang and X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. doi: 10.1137/120872942. Google Scholar

[36]

D. Weetman and B. Kamgang, etc, Aedes mosquitoes and aedes-borne arboviruses in africa: Current and future threats, Int. J. Environ. Res. Public Health, 15 (2018), 220.Google Scholar

[37]

X. Q. Zhao, Dynamical Systems in Population Biology. Second Edition, CMS Books in Mathematics/Ouvrages de Math$\acute{e}$matiques de la SMC. Springer, Cham, 2017. doi: 10.1007/978-3-319-56433-3. Google Scholar

Figure 1.  $ \rho(t) = 1 $. For fixed domain, we have $ R_0(1.1)<1 $. Graphs $ (a)-(c) $ show that $ M $ tends to 0
Figure 2.  $ \rho(t) = e^{0.1(1-\cos(4t))} $. For big evolution rate $ \rho(t) $ with $ \overline{\rho^{-2}}<1 $, we have $ R_0(\rho)>1 $. Graph $ (a) $ shows that $ M $ stabilizes to a positive periodic steady state. Graphs $ (b) $ and $ (c) $, which are the cross-sectional view and contour map respectively, present the periodic evolution of the domain
Figure 3.  $ \rho(t) = 1 $. For fixed domain, we have $ R_0(1.1)>1 $. Graphs $ (a)-(c) $ show that $ M $ tends to a positive steady state
Figure 4.  $ \rho(t) = e^{0.1(\cos(4t)-1)} $. For small evolution rate $ \rho(t) $ with $ \overline{\rho^{-2}}>1 $, we couldn't figure out the value of $ R_0(\rho) $. But we can see from graphs $ (a)-(c) $ that mosquitoes become extinct eventually
[1]

Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102

[2]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[3]

Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2625-2640. doi: 10.3934/dcdsb.2018124

[4]

Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105

[5]

Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112

[6]

Aniello Raffaele Patrone, Otmar Scherzer. On a spatial-temporal decomposition of optical flow. Inverse Problems & Imaging, 2017, 11 (4) : 761-781. doi: 10.3934/ipi.2017036

[7]

Brahim Alouini. Long-time behavior of a Bose-Einstein equation in a two-dimensional thin domain. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1629-1643. doi: 10.3934/cpaa.2011.10.1629

[8]

Yoon-Sik Cho, Aram Galstyan, P. Jeffrey Brantingham, George Tita. Latent self-exciting point process model for spatial-temporal networks. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1335-1354. doi: 10.3934/dcdsb.2014.19.1335

[9]

Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks & Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767

[10]

Lia Bronsard, Seong-A Shim. Long-time behavior for competition-diffusion systems via viscosity comparison. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 561-581. doi: 10.3934/dcds.2005.13.561

[11]

Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081

[12]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[13]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114

[14]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[15]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

[16]

Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509

[17]

Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041

[18]

Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873

[19]

E. C.M. Crooks, E. N. Dancer, Danielle Hilhorst. Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 39-44. doi: 10.3934/dcdsb.2007.8.39

[20]

Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (149)
  • HTML views (592)
  • Cited by (0)

Other articles
by authors

[Back to Top]