# American Institute of Mathematical Sciences

September  2019, 24(9): 4685-4702. doi: 10.3934/dcdsb.2018329

## Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system

 School of Mathematics and Statistics, Central South University, Changsha 410083, Hunan, China

* Corresponding author: Xianhua Tang

Received  May 2018 Revised  August 2018 Published  January 2019

Fund Project: This work is partially supported by the Hunan Provincial Innovation Foundation for Postgraduate (No: CX2017B041) and the National Natural Science Foundation of China (No: 11571370)

This paper is concerned with the following planar Schrödinger-Poisson system
 $\left\{ \begin{array}{ll} -\triangle u+V(x)u+\phi u = f(x,u), \ \ \ \ x\in { \mathbb{R} }^{2},\\ \triangle \phi = u^2, \ \ \ \ x\in { \mathbb{R} }^{2}, \end{array} \right.$
where
 $V(x)$
and
 $f(x, u)$
are axially symmetric in
 $x$
, and
 $f(x, u)$
is asymptotically cubic or super-cubic in
 $u$
. With a different variational approach used in [S. Cingolani, T. Weth, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33 (2016) 169-197], we obtain the existence of an axially symmetric Nehari-type ground state solution and a nontrivial solution for the above system. The axial symmetry is more general than radial symmetry, but less used in the literature, since the embedding from the space of axially symmetric functions to
 $L^s( \mathbb{R} ^N)$
is not compact. Our results generalize previous ones in the literature, and some of new phenomena do not occur in the corresponding problem for higher space dimensions.
Citation: Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329
##### References:
 [1] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404. doi: 10.1142/S021919970800282X. Google Scholar [2] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. doi: 10.1016/j.jmaa.2008.03.057. Google Scholar [3] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293. doi: 10.12775/TMNA.1998.019. Google Scholar [4] V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420. doi: 10.1142/S0129055X02001168. Google Scholar [5] R. Benguria, H. Brezis and E. H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys., 79 (1981), 167-180. doi: 10.1007/BF01942059. Google Scholar [6] I. Catto and P. L. Lions, Binding of atoms and stability of molecules in hartree and thomas-fermi type theories, Comm. Partial Differential Equations, 18 (1993), 1149-1159. doi: 10.1080/03605309308820967. Google Scholar [7] G. Cerami and J. G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521-543. doi: 10.1016/j.jde.2009.06.017. Google Scholar [8] J. Chen, S. T. Chen and X. H. Tang, Ground state solutions for the planar asymptotically periodic Schrödinger-Poisson system, Taiwanese J. Math., 21 (2017), 363-383. doi: 10.11650/tjm/7784. Google Scholar [9] J. Chen, X. H. Tang and S. T. Chen, Existence of ground states for fractional Kirchhoff equations with general potentials via Nehari-Pohozaev manifold, Electron. J. Differ. Eq., 2018 (2018), Paper No. 142, 21 pp. Google Scholar [10] S. T. Chen and X. H. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $\mathbb R^3$, Z. Angew. Math. Phys., 67 (2016), Art. 102, 18 pp. doi: 10.1007/s00033-016-0695-2. Google Scholar [11] S. T. Chen and X. H. Tang, Nehari type ground state solutions for asymptotically periodic Schrödinger-Poisson systems, Taiwan. J. Math., 21 (2017), 363-383. doi: 10.11650/tjm/7784. Google Scholar [12] S. T. Chen and X. H. Tang, Improved results for Klein-Gordon-Maxwell systems with general nonlinearity, Discrete. Contin. Dyn. Syst., 38 (2018), 2333-2348. doi: 10.3934/dcds.2018096. Google Scholar [13] S. T. Chen and X. H. Tang, Ground state solutions for generalized quasilinear Schrödinger equations with variable potentials and Berestycki-Lions nonlinearities, J. Math. Phys., 59 (2018), 081508, 18pp. doi: 10.1063/1.5036570. Google Scholar [14] S. Cingolani and T. Weth, On the planar Schrödinger-Poisson system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 169-197. doi: 10.1016/j.anihpc.2014.09.008. Google Scholar [15] G. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 7 (2003), 417-423. Google Scholar [16] T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906. doi: 10.1017/S030821050000353X. Google Scholar [17] M. Du and T. Weth, Ground states and high energy solutions of the planar Schrödinger-Poisson system, Nonlinearity, 30 (2017), 3492-3515. doi: 10.1088/1361-6544/aa7eac. Google Scholar [18] E. H. Lieb, Thomas-fermi and related theories and molecules, Rev. Modern Phys., 53 (1981), 603-641. doi: 10.1103/RevModPhys.53.603. Google Scholar [19] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev inequality and related inequalities, Ann. of Math., 118 (1983), 349-374. doi: 10.2307/2007032. Google Scholar [20] P. Markowich, C. Ringhofer and C. Schmeiser, The concentration-compactness principle in the calculus of variations. the locally compact case. Ⅰ & Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283. doi: 10.1016/S0294-1449(16)30422-X. Google Scholar [21] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. doi: 10.1016/j.jfa.2006.04.005. Google Scholar [22] D. Ruiz, On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198 (2010), 349-368. doi: 10.1007/s00205-010-0299-5. Google Scholar [23] E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33. doi: 10.1007/s00526-009-0299-1. Google Scholar [24] J. Stubbe, Bound states of two-dimensional Schrödinger-Newton equations, arXiv: 0807.4059.Google Scholar [25] J. J. Sun and S. W. Ma, Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differential Equations, 260 (2016), 2119-2149. doi: 10.1016/j.jde.2015.09.057. Google Scholar [26] X. H. Tang, New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum, J. Math. Anal. Appl., 413 (2014), 392-410. doi: 10.1016/j.jmaa.2013.11.062. Google Scholar [27] X. H. Tang and B. T. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differential Equations, 261 (2016), 2384-2402. doi: 10.1016/j.jde.2016.04.032. Google Scholar [28] X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potential, Disc. Contin. Dyn. Syst., 37 (2017), 4973-5002. doi: 10.3934/dcds.2017214. Google Scholar [29] X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohožaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations, 56 (2017), Art. 110, 25 pp. doi: 10.1007/s00526-017-1214-9. Google Scholar [30] X. H. Tang, X. Y. Lin and J. S. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Differ. Equ, (2018), 1-15. doi: 10.1007/s10884-018-9662-2. Google Scholar [31] Z. P. Wang and H. S. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in $\mathbb R^3$, Discrete Contin. Dyn. Syst., 18 (2007), 809-816. doi: 10.3934/dcds.2007.18.809. Google Scholar [32] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1. Google Scholar [33] L. G. Zhao and F. K. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169. doi: 10.1016/j.jmaa.2008.04.053. Google Scholar

show all references

##### References:
 [1] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404. doi: 10.1142/S021919970800282X. Google Scholar [2] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. doi: 10.1016/j.jmaa.2008.03.057. Google Scholar [3] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293. doi: 10.12775/TMNA.1998.019. Google Scholar [4] V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420. doi: 10.1142/S0129055X02001168. Google Scholar [5] R. Benguria, H. Brezis and E. H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys., 79 (1981), 167-180. doi: 10.1007/BF01942059. Google Scholar [6] I. Catto and P. L. Lions, Binding of atoms and stability of molecules in hartree and thomas-fermi type theories, Comm. Partial Differential Equations, 18 (1993), 1149-1159. doi: 10.1080/03605309308820967. Google Scholar [7] G. Cerami and J. G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521-543. doi: 10.1016/j.jde.2009.06.017. Google Scholar [8] J. Chen, S. T. Chen and X. H. Tang, Ground state solutions for the planar asymptotically periodic Schrödinger-Poisson system, Taiwanese J. Math., 21 (2017), 363-383. doi: 10.11650/tjm/7784. Google Scholar [9] J. Chen, X. H. Tang and S. T. Chen, Existence of ground states for fractional Kirchhoff equations with general potentials via Nehari-Pohozaev manifold, Electron. J. Differ. Eq., 2018 (2018), Paper No. 142, 21 pp. Google Scholar [10] S. T. Chen and X. H. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $\mathbb R^3$, Z. Angew. Math. Phys., 67 (2016), Art. 102, 18 pp. doi: 10.1007/s00033-016-0695-2. Google Scholar [11] S. T. Chen and X. H. Tang, Nehari type ground state solutions for asymptotically periodic Schrödinger-Poisson systems, Taiwan. J. Math., 21 (2017), 363-383. doi: 10.11650/tjm/7784. Google Scholar [12] S. T. Chen and X. H. Tang, Improved results for Klein-Gordon-Maxwell systems with general nonlinearity, Discrete. Contin. Dyn. Syst., 38 (2018), 2333-2348. doi: 10.3934/dcds.2018096. Google Scholar [13] S. T. Chen and X. H. Tang, Ground state solutions for generalized quasilinear Schrödinger equations with variable potentials and Berestycki-Lions nonlinearities, J. Math. Phys., 59 (2018), 081508, 18pp. doi: 10.1063/1.5036570. Google Scholar [14] S. Cingolani and T. Weth, On the planar Schrödinger-Poisson system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 169-197. doi: 10.1016/j.anihpc.2014.09.008. Google Scholar [15] G. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 7 (2003), 417-423. Google Scholar [16] T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906. doi: 10.1017/S030821050000353X. Google Scholar [17] M. Du and T. Weth, Ground states and high energy solutions of the planar Schrödinger-Poisson system, Nonlinearity, 30 (2017), 3492-3515. doi: 10.1088/1361-6544/aa7eac. Google Scholar [18] E. H. Lieb, Thomas-fermi and related theories and molecules, Rev. Modern Phys., 53 (1981), 603-641. doi: 10.1103/RevModPhys.53.603. Google Scholar [19] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev inequality and related inequalities, Ann. of Math., 118 (1983), 349-374. doi: 10.2307/2007032. Google Scholar [20] P. Markowich, C. Ringhofer and C. Schmeiser, The concentration-compactness principle in the calculus of variations. the locally compact case. Ⅰ & Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283. doi: 10.1016/S0294-1449(16)30422-X. Google Scholar [21] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. doi: 10.1016/j.jfa.2006.04.005. Google Scholar [22] D. Ruiz, On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198 (2010), 349-368. doi: 10.1007/s00205-010-0299-5. Google Scholar [23] E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33. doi: 10.1007/s00526-009-0299-1. Google Scholar [24] J. Stubbe, Bound states of two-dimensional Schrödinger-Newton equations, arXiv: 0807.4059.Google Scholar [25] J. J. Sun and S. W. Ma, Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differential Equations, 260 (2016), 2119-2149. doi: 10.1016/j.jde.2015.09.057. Google Scholar [26] X. H. Tang, New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum, J. Math. Anal. Appl., 413 (2014), 392-410. doi: 10.1016/j.jmaa.2013.11.062. Google Scholar [27] X. H. Tang and B. T. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differential Equations, 261 (2016), 2384-2402. doi: 10.1016/j.jde.2016.04.032. Google Scholar [28] X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potential, Disc. Contin. Dyn. Syst., 37 (2017), 4973-5002. doi: 10.3934/dcds.2017214. Google Scholar [29] X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohožaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations, 56 (2017), Art. 110, 25 pp. doi: 10.1007/s00526-017-1214-9. Google Scholar [30] X. H. Tang, X. Y. Lin and J. S. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Differ. Equ, (2018), 1-15. doi: 10.1007/s10884-018-9662-2. Google Scholar [31] Z. P. Wang and H. S. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in $\mathbb R^3$, Discrete Contin. Dyn. Syst., 18 (2007), 809-816. doi: 10.3934/dcds.2007.18.809. Google Scholar [32] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1. Google Scholar [33] L. G. Zhao and F. K. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169. doi: 10.1016/j.jmaa.2008.04.053. Google Scholar
 [1] Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257 [2] Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025 [3] Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214 [4] Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$\ddot{\mbox{o}}$dinger-Poisson system involving critical exponent. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104 [5] Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411 [6] Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $\mathbb{R} ^{3}$. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079 [7] Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809 [8] Chunhua Wang, Jing Yang. Positive solutions for a nonlinear Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5461-5504. doi: 10.3934/dcds.2018241 [9] Zhi Chen, Xianhua Tang, Ning Zhang, Jian Zhang. Standing waves for Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6103-6129. doi: 10.3934/dcds.2019266 [10] Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure & Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867 [11] Yi He, Lu Lu, Wei Shuai. Concentrating ground-state solutions for a class of Schödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents. Communications on Pure & Applied Analysis, 2016, 15 (1) : 103-125. doi: 10.3934/cpaa.2016.15.103 [12] Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048 [13] Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427 [14] Claudianor O. Alves, Minbo Yang. Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5881-5910. doi: 10.3934/dcds.2016058 [15] Qiangchang Ju, Fucai Li, Hailiang Li. Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data. Kinetic & Related Models, 2011, 4 (3) : 767-783. doi: 10.3934/krm.2011.4.767 [16] Amna Dabaa, O. Goubet. Long time behavior of solutions to a Schrödinger-Poisson system in $R^3$. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1743-1756. doi: 10.3934/cpaa.2016011 [17] Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077 [18] Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074 [19] Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations & Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009 [20] Marius Ghergu, Gurpreet Singh. On a class of mixed Choquard-Schrödinger-Poisson systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 297-309. doi: 10.3934/dcdss.2019021

2018 Impact Factor: 1.008