• Previous Article
    Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $
  • DCDS-B Home
  • This Issue
  • Next Article
    Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients
July  2019, 24(7): 3281-3298. doi: 10.3934/dcdsb.2018320

On a beam model related to flight structures with nonlocal energy damping

1. 

Department of Mathematics, State University of Londrina, 86057-970, Londrina, PR, Brazil

2. 

Nucleus of Exact and Technological Sciences, State University of Mato Grosso do Sul, 79804-970, Dourados, MS, Brazil

3. 

Center of Exact and Technological Sciences, State University of Paraná West, 85819-110, Cascavel, PR, Brazil

* Corresponding author. M. A. Jorge Silva has been supported by CNPq, grant 441414/2014-1

V. Narciso has been supported by FUNDECT, grant 219/2016

Received  November 2017 Revised  August 2018 Published  January 2019

This paper deals with new results on existence, uniqueness and stability for a class of nonlinear beams arising in connection with nonlocal dissipative models for flight structures with energy damping first proposed by Balakrishnan-Taylor [2]. More precisely, the following
$ n $
-dimensional model is addressed
$ u_{tt}-\kappa \Delta u+\Delta ^2u-\gamma\left[\int_{\Omega}\left(|\Delta u|^2+|u_t|^2\right)dx \right]^q\Delta u_t+f(u) = 0 \ in \ \Omega \times \mathbb{R}^+, $
where
$ \Omega\subset \mathbb{R}^n $
is a bounded domain with smooth boundary, the coefficient of extensibility
$ \kappa $
is nonnegative, the damping coefficient
$ \gamma $
is positive and
$ q\ge 1 $
. The nonlinear source
$ f(u) $
can be seen as an external forcing term of lower order. Our main results feature global existence and uniqueness, polynomial stability and a non-exponential decay prospect.
Citation: Marcio A. Jorge Silva, Vando Narciso, André Vicente. On a beam model related to flight structures with nonlocal energy damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3281-3298. doi: 10.3934/dcdsb.2018320
References:
[1]

A. V. Balakrishnan, A theory of nonlinear damping in flexible structures, Stabilization of flexible structures, (1988), 1–12.Google Scholar

[2]

A. V. Balakrishnan and L. W. Taylor, Distributed Parameter Nonlinear Damping Models for Flight Structures, Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989.Google Scholar

[3]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90. doi: 10.1016/0022-247X(73)90121-2. Google Scholar

[4]

J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418. doi: 10.1016/0022-0396(73)90056-9. Google Scholar

[5]

R. W. Bass and D. Zes, Spillover, Nonlinearity, and flexible structures, The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 ed. L.W.Taylor, (1991), 1–14.Google Scholar

[6]

A. C. Biazutti and H. R. Crippa, Global attractor and inertial set for the beam equation, Applicable Analysis, 55 (1994), 61-78. doi: 10.1080/00036819408840290. Google Scholar

[7]

M. M. CavalcantiV. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705-731. doi: 10.1142/S0219199704001483. Google Scholar

[8]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math., 195 (2008), ⅷ+183 pp. doi: 10.1090/memo/0912. Google Scholar

[9]

H. R. ClarkM. A. Rincon and R. D. Rodrigues, Beam equation with weak-internal damping in domain with moving boundary, Applied Numerical Mathematics, 47 (2003), 139-157. doi: 10.1016/S0168-9274(03)00066-7. Google Scholar

[10]

H. R. Clark, Elastic membrane equation in bounded and unbounded domains, EJQTDE, 11 (2002), 1-21. Google Scholar

[11]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29 (1970), 443-454. doi: 10.1016/0022-247X(70)90094-6. Google Scholar

[12]

E. H. Dowell, Aeroelasticity of Plates and Shells, Groninger, NL, Noordhoff Int. Publishing Co., 1975.Google Scholar

[13]

A. Eden and A. J. Milani, Exponential attractor for extensible beam equations, Nonlinearity, 6 (1993), 457-479. doi: 10.1088/0951-7715/6/3/007. Google Scholar

[14]

C. GiorgiM. G. NasoV. Pata and M. Potomkin, Global attractors for the extensible thermoelastic beam system, J. Differential Equations, 246 (2009), 3496-3517. doi: 10.1016/j.jde.2009.02.020. Google Scholar

[15]

T. J. Hughes and J. E. Marsden, Mathematical Foundation of Elasticity, Dover Publications, Inc., New York, 1994. Google Scholar

[16]

M. A. Jorge Silva and V. Narciso, Long-time behavior for a plate equation with nonlocal weak damping, Differential Integral Equations, 27 (2014), 931-948. Google Scholar

[17]

M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete Contin. Dyn. Syst., 35 (2015), 985-1008. doi: 10.3934/dcds.2015.35.985. Google Scholar

[18]

M. A. Jorge Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping, Evol. Equ. Control Theory, 6 (2017), 437-470. doi: 10.3934/eect.2017023. Google Scholar

[19]

H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation, Differential Integral Equations, 10 (1997), 1075-1092. Google Scholar

[20]

J. LimacoH. R. Clark and A. J. Feitosa, Beam evolution equation with variable coeficients, Math. Meth. Appl. Sci., 28 (2005), 457-478. doi: 10.1002/mma.577. Google Scholar

[21]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. Google Scholar

[22]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412. doi: 10.1016/j.na.2010.07.023. Google Scholar

[23]

T. F. MaV. Narciso and M. L. Pelicer, Long-time behavior of a model of extensible beams with nonlinear boundary dissipations, J. Math. Anal. Appl., 396 (2012), 694-703. doi: 10.1016/j.jmaa.2012.07.004. Google Scholar

[24]

C. Mu and J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, Z. Angew. Math. Phys., 65 (2014), 91-113. doi: 10.1007/s00033-013-0324-2. Google Scholar

[25]

M. Nakao, Convergence of solutions of the wave equation with a nonlinear dissipative term to the steady state, Mem. Fac. Sci. Kyushu Univ. Ser. A, 30 (1976), 257-265. doi: 10.2206/kyushumfs.30.257. Google Scholar

[26]

M. Nakao, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 30 (1978), 747-762. doi: 10.2969/jmsj/03040747. Google Scholar

[27]

S. K. Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differential Equations, 135 (1997), 299-314. doi: 10.1006/jdeq.1996.3231. Google Scholar

[28]

S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, Journal of Applied Mechanics, 17 (1950), 35-36. Google Scholar

[29]

Y. You, Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan-Taylor damping, Abstr. Appl. Anal., 1 (1996), 83-102. doi: 10.1155/S1085337596000048. Google Scholar

[30]

W. Zhang, Nonlinear damping model: Response to random excitation, 5th Annual NASA Spacecraft Control Laboratory Experiment (SCOLE) Workshop, (1988), 27–38.Google Scholar

[31]

Y. Zhijian, On an extensible beam equation with nonlinear damping and source terms, J. Differential Equations, 254 (2013), 3903-3927. doi: 10.1016/j.jde.2013.02.008. Google Scholar

show all references

References:
[1]

A. V. Balakrishnan, A theory of nonlinear damping in flexible structures, Stabilization of flexible structures, (1988), 1–12.Google Scholar

[2]

A. V. Balakrishnan and L. W. Taylor, Distributed Parameter Nonlinear Damping Models for Flight Structures, Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989.Google Scholar

[3]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90. doi: 10.1016/0022-247X(73)90121-2. Google Scholar

[4]

J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418. doi: 10.1016/0022-0396(73)90056-9. Google Scholar

[5]

R. W. Bass and D. Zes, Spillover, Nonlinearity, and flexible structures, The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 ed. L.W.Taylor, (1991), 1–14.Google Scholar

[6]

A. C. Biazutti and H. R. Crippa, Global attractor and inertial set for the beam equation, Applicable Analysis, 55 (1994), 61-78. doi: 10.1080/00036819408840290. Google Scholar

[7]

M. M. CavalcantiV. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705-731. doi: 10.1142/S0219199704001483. Google Scholar

[8]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math., 195 (2008), ⅷ+183 pp. doi: 10.1090/memo/0912. Google Scholar

[9]

H. R. ClarkM. A. Rincon and R. D. Rodrigues, Beam equation with weak-internal damping in domain with moving boundary, Applied Numerical Mathematics, 47 (2003), 139-157. doi: 10.1016/S0168-9274(03)00066-7. Google Scholar

[10]

H. R. Clark, Elastic membrane equation in bounded and unbounded domains, EJQTDE, 11 (2002), 1-21. Google Scholar

[11]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29 (1970), 443-454. doi: 10.1016/0022-247X(70)90094-6. Google Scholar

[12]

E. H. Dowell, Aeroelasticity of Plates and Shells, Groninger, NL, Noordhoff Int. Publishing Co., 1975.Google Scholar

[13]

A. Eden and A. J. Milani, Exponential attractor for extensible beam equations, Nonlinearity, 6 (1993), 457-479. doi: 10.1088/0951-7715/6/3/007. Google Scholar

[14]

C. GiorgiM. G. NasoV. Pata and M. Potomkin, Global attractors for the extensible thermoelastic beam system, J. Differential Equations, 246 (2009), 3496-3517. doi: 10.1016/j.jde.2009.02.020. Google Scholar

[15]

T. J. Hughes and J. E. Marsden, Mathematical Foundation of Elasticity, Dover Publications, Inc., New York, 1994. Google Scholar

[16]

M. A. Jorge Silva and V. Narciso, Long-time behavior for a plate equation with nonlocal weak damping, Differential Integral Equations, 27 (2014), 931-948. Google Scholar

[17]

M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete Contin. Dyn. Syst., 35 (2015), 985-1008. doi: 10.3934/dcds.2015.35.985. Google Scholar

[18]

M. A. Jorge Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping, Evol. Equ. Control Theory, 6 (2017), 437-470. doi: 10.3934/eect.2017023. Google Scholar

[19]

H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation, Differential Integral Equations, 10 (1997), 1075-1092. Google Scholar

[20]

J. LimacoH. R. Clark and A. J. Feitosa, Beam evolution equation with variable coeficients, Math. Meth. Appl. Sci., 28 (2005), 457-478. doi: 10.1002/mma.577. Google Scholar

[21]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. Google Scholar

[22]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412. doi: 10.1016/j.na.2010.07.023. Google Scholar

[23]

T. F. MaV. Narciso and M. L. Pelicer, Long-time behavior of a model of extensible beams with nonlinear boundary dissipations, J. Math. Anal. Appl., 396 (2012), 694-703. doi: 10.1016/j.jmaa.2012.07.004. Google Scholar

[24]

C. Mu and J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, Z. Angew. Math. Phys., 65 (2014), 91-113. doi: 10.1007/s00033-013-0324-2. Google Scholar

[25]

M. Nakao, Convergence of solutions of the wave equation with a nonlinear dissipative term to the steady state, Mem. Fac. Sci. Kyushu Univ. Ser. A, 30 (1976), 257-265. doi: 10.2206/kyushumfs.30.257. Google Scholar

[26]

M. Nakao, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 30 (1978), 747-762. doi: 10.2969/jmsj/03040747. Google Scholar

[27]

S. K. Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differential Equations, 135 (1997), 299-314. doi: 10.1006/jdeq.1996.3231. Google Scholar

[28]

S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, Journal of Applied Mechanics, 17 (1950), 35-36. Google Scholar

[29]

Y. You, Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan-Taylor damping, Abstr. Appl. Anal., 1 (1996), 83-102. doi: 10.1155/S1085337596000048. Google Scholar

[30]

W. Zhang, Nonlinear damping model: Response to random excitation, 5th Annual NASA Spacecraft Control Laboratory Experiment (SCOLE) Workshop, (1988), 27–38.Google Scholar

[31]

Y. Zhijian, On an extensible beam equation with nonlinear damping and source terms, J. Differential Equations, 254 (2013), 3903-3927. doi: 10.1016/j.jde.2013.02.008. Google Scholar

[1]

Marcio Antonio Jorge da Silva, Vando Narciso. Attractors and their properties for a class of nonlocal extensible beams. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 985-1008. doi: 10.3934/dcds.2015.35.985

[2]

Filippo Dell'Oro, Vittorino Pata. Memory relaxation of type III thermoelastic extensible beams and Berger plates. Evolution Equations & Control Theory, 2012, 1 (2) : 251-270. doi: 10.3934/eect.2012.1.251

[3]

Marcio Antonio Jorge da Silva, Vando Narciso. Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping*. Evolution Equations & Control Theory, 2017, 6 (3) : 437-470. doi: 10.3934/eect.2017023

[4]

Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461

[5]

E. N. Dancer. Some examples on solution structures for weakly nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 817-826. doi: 10.3934/dcds.2005.12.817

[6]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[7]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[8]

Michele Coti Zelati. Global and exponential attractors for the singularly perturbed extensible beam. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 1041-1060. doi: 10.3934/dcds.2009.25.1041

[9]

Alessia Berti, Maria Grazia Naso. Vibrations of a damped extensible beam between two stops. Evolution Equations & Control Theory, 2013, 2 (1) : 35-54. doi: 10.3934/eect.2013.2.35

[10]

Xiao-Bing Li, Xian-Jun Long, Zhi Lin. Stability of solution mapping for parametric symmetric vector equilibrium problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 661-671. doi: 10.3934/jimo.2015.11.661

[11]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[12]

Jose Carlos Camacho, Maria de los Santos Bruzon. Similarity reductions of a nonlinear model for vibrations of beams. Conference Publications, 2015, 2015 (special) : 176-184. doi: 10.3934/proc.2015.0176

[13]

Patrick Ballard, Bernadette Miara. Formal asymptotic analysis of elastic beams and thin-walled beams: A derivation of the Vlassov equations and their generalization to the anisotropic heterogeneous case. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1547-1588. doi: 10.3934/dcdss.2019107

[14]

William D. Kalies, Konstantin Mischaikow, Robert C.A.M. Vandervorst. Lattice structures for attractors I. Journal of Computational Dynamics, 2014, 1 (2) : 307-338. doi: 10.3934/jcd.2014.1.307

[15]

Paulo Antunes, Joana M. Nunes da Costa. Hypersymplectic structures on Courant algebroids. Journal of Geometric Mechanics, 2015, 7 (3) : 255-280. doi: 10.3934/jgm.2015.7.255

[16]

Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021

[17]

Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553

[18]

Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic & Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117

[19]

A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373

[20]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (67)
  • HTML views (389)
  • Cited by (0)

[Back to Top]