July  2019, 24(7): 3227-3247. doi: 10.3934/dcdsb.2018317

A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative

1. 

African Institute for Mathematical Sciences-Cameroon, Limbe Crystal Gardens, South West Region, P.O. Box 608, Cameroon

2. 

Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of Free Staye, Bloemfontein, 9300, South Africa

* Corresponding author: Atangana Abdon

Received  July 2017 Revised  March 2018 Published  January 2019

Fund Project: The first author was supported by AIMS-Cameroon Scholarship grant 2015-2016.
The second author was supported by AIMS-Cameroon tutor fellowship grant 2015-2016

In this paper, the groundwater flow equation within an unconfined aquifer is modified using the concept of new derivative with fractional order without singular kernel recently proposed by Caputo and Fabrizio. Some properties and applications are given regarding the Caputo-Fabrizio fractional order derivative. The existence and the uniqueness of the solution of the modified groundwater flow equation within an unconfined aquifer is presented, the proof of the existence use the definition of Caputo-Fabrizio integral and the powerful fixed-point Theorem. A detailed analysis on the uniqueness is included. We perform on the numerical analysis on which the Crank-Nicolson scheme is used for discretisation. Then we present in particular the proof of the stability of the method, the proof combine the Fourier and Von Neumann stability analysis. A detailed analysis on the convergence is also achieved.

Citation: Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317
References:
[1]

R. T. Alqahtani, Fixed-point theorem for Caputo-Fabrizio fractional Nagumo equation with nonlinear diffusion and convection, in J. Nonlinear Sci. Appl, 9 (2016), 1991-1999. doi: 10.22436/jnsa.009.05.05.

[2]

A. Atangana and B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: Application of Caputo-Fabrizio derivative, in Arabian Journal of Geosciences, Springer, 9 (2016), 8pp.

[3]

A. Atangana and B. S. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, in Entropy, Multidisciplinary Digital Publishing Institute, 17 (2015), 4439-4453. doi: 10.3390/e17064439.

[4]

A. Atangana and N. Bildik, The use of fractional order derivative to predict the groundwater flow, in Hindawi Publishing Corporation, Mathematical Problems in Engineering, 2013 (2013), Art. ID 543026, 9 pp. doi: 10.1155/2013/543026.

[5]

A. Atangana and P. D. Vermeulen, Analytical solutions of a space-time fractional derivative of groundwater flow equation, in Hindawi, 2014 (2014), Art. ID 381753, 11 pp. doi: 10.1155/2014/381753.

[6]

A. Atangana and J. F. Botha, A generalized groundwater flow equation using the concept of variable-order derivative, in Boundary Value Problems, Springer, 2013 (2013), 1-11. doi: 10.1186/1687-2770-2013-53.

[7]

A. Atangana and J. J. Nieto, Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, in Advances in Mechanical Engineering, SAGE Publications 7 (2015), 1687814015613758.

[8]

N. S. Boulton, Unsteady radial flow to a pumped well allowing for delayed yield from storage, in Int. Assoc. Sci. Hydrol. Publ, 2 (1954), 472-477.

[9]

H. Brezis, Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.

[10]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, in Progr. Fract. Differ. Appl, 1 (2015), 1-13.

[11]

C.-M. Chen, et al, A Fourier method for the fractional diffusion equation describing subdiffusion, in Journal of Computational Physics, 227 (2007), 886-897. doi: 10.1016/j.jcp.2007.05.012.

[12]

C.-M. Chen, et al, Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation, in Mathematics of Computation, 81 (2012), 345-366. doi: 10.1090/S0025-5718-2011-02447-6.

[13]

A. Cloot and J. F. Botha, A generalised groundwater flow equation using the concept of non-integer order derivatives, in Water SA, Water Research Commission (WRC), 32 (2007), 1-7.

[14]

K. Diethelm, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, in Numerical algorithms, Springer, 36 (2004), 31-52. doi: 10.1023/B:NUMA.0000027736.85078.be.

[15]

Eng. Deeb Abdel-Ghafour, Pumping test for groundwater aquifers analysis and evaluation, 2005, available from: https://docplayer.net/11404875-Pumping-test-for-groundwater-aquifers-analysis-and-evaluation-by-eng-deeb-abdel-ghafour.html.

[16]

G. Gambolati, Analytic element modeling of groundwater flow, in Eos, Transactions Ameriocan Geophysical Union, 77 (1995), 103-103.

[17]

G. Garven and R. A. Freeze, Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits, in Mathematical and Numerical Model, American Journal of Science, 284 (1984), 1085-1124.

[18]

H. M. Haitjema, Analytic element modeling of groundwater flow, in nc San Diego, CA, USA Google Scholar, Academic Press, (1995), 33-75.

[19]

L. F. Konikow and D. B. Grove, Derivation of equations describing solute transport in ground water, in US Geological Survey, Water Resources Division, 77 (1977).

[20]

J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular kernel, in Progr. Fract. Differ. Appl, 1 (2015), 87-92.

[21]

P. K. Mishra and K. L. Kuhlman, Unconfined aquifer flow theory: from Dupuit to present, in Advances in Hydrogeology, Springer, New York, NY (2013), 185-202.

[22]

Pollock and W. David, Documentation of computer programs to compute and display pathlines using results from the US Geological Survey modular three-dimensional finite-difference ground-water flow model, in US Geological Survey, 89 (1989).

[23]

J. R. PrendergastR. M. Quinn and J. H. Lawton, The gaps between theory and practice in selecting nature reserves, Conservation Biology, Wiley Online Library, 13 (1999), 484-492.

[24]

S. A. Sauter and C. Schwab, Boundary Element Methods, Springer Series in Computational Mathematics, 39. Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-540-68093-2.

[25]

C. V. Theis, The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground-water storage, in Eos, Transactions American Geophysical Union, Wiley Online Library, 16 (1935), 519-524.

[26]

G. K. Watugala, Sumudu transform: A new integral transform to solve differential equations and control engineering problems, in Integrated Education, TaylorFrancis, 24 (1993), 35-43. doi: 10.1080/0020739930240105.

[27]

S. B. Yuste and L. Acedo, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, in Journal on Numerical Analysis, SIAM, 42 (2005), 1862-1874. doi: 10.1137/030602666.

[28]

I. S. Zektser, E. Lorne and others, Groundwater Resources of the World: And Their Use, IhP Series on groundwater, 6nd edition, Unesco, 2004.

show all references

References:
[1]

R. T. Alqahtani, Fixed-point theorem for Caputo-Fabrizio fractional Nagumo equation with nonlinear diffusion and convection, in J. Nonlinear Sci. Appl, 9 (2016), 1991-1999. doi: 10.22436/jnsa.009.05.05.

[2]

A. Atangana and B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: Application of Caputo-Fabrizio derivative, in Arabian Journal of Geosciences, Springer, 9 (2016), 8pp.

[3]

A. Atangana and B. S. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, in Entropy, Multidisciplinary Digital Publishing Institute, 17 (2015), 4439-4453. doi: 10.3390/e17064439.

[4]

A. Atangana and N. Bildik, The use of fractional order derivative to predict the groundwater flow, in Hindawi Publishing Corporation, Mathematical Problems in Engineering, 2013 (2013), Art. ID 543026, 9 pp. doi: 10.1155/2013/543026.

[5]

A. Atangana and P. D. Vermeulen, Analytical solutions of a space-time fractional derivative of groundwater flow equation, in Hindawi, 2014 (2014), Art. ID 381753, 11 pp. doi: 10.1155/2014/381753.

[6]

A. Atangana and J. F. Botha, A generalized groundwater flow equation using the concept of variable-order derivative, in Boundary Value Problems, Springer, 2013 (2013), 1-11. doi: 10.1186/1687-2770-2013-53.

[7]

A. Atangana and J. J. Nieto, Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, in Advances in Mechanical Engineering, SAGE Publications 7 (2015), 1687814015613758.

[8]

N. S. Boulton, Unsteady radial flow to a pumped well allowing for delayed yield from storage, in Int. Assoc. Sci. Hydrol. Publ, 2 (1954), 472-477.

[9]

H. Brezis, Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.

[10]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, in Progr. Fract. Differ. Appl, 1 (2015), 1-13.

[11]

C.-M. Chen, et al, A Fourier method for the fractional diffusion equation describing subdiffusion, in Journal of Computational Physics, 227 (2007), 886-897. doi: 10.1016/j.jcp.2007.05.012.

[12]

C.-M. Chen, et al, Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation, in Mathematics of Computation, 81 (2012), 345-366. doi: 10.1090/S0025-5718-2011-02447-6.

[13]

A. Cloot and J. F. Botha, A generalised groundwater flow equation using the concept of non-integer order derivatives, in Water SA, Water Research Commission (WRC), 32 (2007), 1-7.

[14]

K. Diethelm, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, in Numerical algorithms, Springer, 36 (2004), 31-52. doi: 10.1023/B:NUMA.0000027736.85078.be.

[15]

Eng. Deeb Abdel-Ghafour, Pumping test for groundwater aquifers analysis and evaluation, 2005, available from: https://docplayer.net/11404875-Pumping-test-for-groundwater-aquifers-analysis-and-evaluation-by-eng-deeb-abdel-ghafour.html.

[16]

G. Gambolati, Analytic element modeling of groundwater flow, in Eos, Transactions Ameriocan Geophysical Union, 77 (1995), 103-103.

[17]

G. Garven and R. A. Freeze, Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits, in Mathematical and Numerical Model, American Journal of Science, 284 (1984), 1085-1124.

[18]

H. M. Haitjema, Analytic element modeling of groundwater flow, in nc San Diego, CA, USA Google Scholar, Academic Press, (1995), 33-75.

[19]

L. F. Konikow and D. B. Grove, Derivation of equations describing solute transport in ground water, in US Geological Survey, Water Resources Division, 77 (1977).

[20]

J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular kernel, in Progr. Fract. Differ. Appl, 1 (2015), 87-92.

[21]

P. K. Mishra and K. L. Kuhlman, Unconfined aquifer flow theory: from Dupuit to present, in Advances in Hydrogeology, Springer, New York, NY (2013), 185-202.

[22]

Pollock and W. David, Documentation of computer programs to compute and display pathlines using results from the US Geological Survey modular three-dimensional finite-difference ground-water flow model, in US Geological Survey, 89 (1989).

[23]

J. R. PrendergastR. M. Quinn and J. H. Lawton, The gaps between theory and practice in selecting nature reserves, Conservation Biology, Wiley Online Library, 13 (1999), 484-492.

[24]

S. A. Sauter and C. Schwab, Boundary Element Methods, Springer Series in Computational Mathematics, 39. Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-540-68093-2.

[25]

C. V. Theis, The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground-water storage, in Eos, Transactions American Geophysical Union, Wiley Online Library, 16 (1935), 519-524.

[26]

G. K. Watugala, Sumudu transform: A new integral transform to solve differential equations and control engineering problems, in Integrated Education, TaylorFrancis, 24 (1993), 35-43. doi: 10.1080/0020739930240105.

[27]

S. B. Yuste and L. Acedo, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, in Journal on Numerical Analysis, SIAM, 42 (2005), 1862-1874. doi: 10.1137/030602666.

[28]

I. S. Zektser, E. Lorne and others, Groundwater Resources of the World: And Their Use, IhP Series on groundwater, 6nd edition, Unesco, 2004.

[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057

[2]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[3]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[4]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[5]

Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic & Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587

[6]

Desmond J. Higham, Xuerong Mao, Lukasz Szpruch. Convergence, non-negativity and stability of a new Milstein scheme with applications to finance. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2083-2100. doi: 10.3934/dcdsb.2013.18.2083

[7]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[8]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019033

[9]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[10]

Benoît Merlet, Morgan Pierre. Convergence to equilibrium for the backward Euler scheme and applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 685-702. doi: 10.3934/cpaa.2010.9.685

[11]

Wei-Zhe Gu, Li-Yong Lu. The linear convergence of a derivative-free descent method for nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 531-548. doi: 10.3934/jimo.2016030

[12]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

[13]

Xinfu Chen, Bei Hu, Jin Liang, Yajing Zhang. Convergence rate of free boundary of numerical scheme for American option. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1435-1444. doi: 10.3934/dcdsb.2016004

[14]

Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$-brownian motion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1459-1502. doi: 10.3934/dcdsb.2018159

[15]

Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393

[16]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[17]

Mostafa Bendahmane, Mauricio Sepúlveda. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 823-853. doi: 10.3934/dcdsb.2009.11.823

[18]

Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic & Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713

[19]

Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173

[20]

Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations & Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017

2017 Impact Factor: 0.972

Article outline

[Back to Top]