# American Institute of Mathematical Sciences

April  2019, 24(4): 1697-1723. doi: 10.3934/dcdsb.2018288

## Convex geometry of the carrying simplex for the May-Leonard map

 Department of Mathematics, UCL, Gower Street, London, WC1E 6BT, UK

* Corresponding author

Received  August 2017 Revised  April 2018 Published  August 2018

We study the convex geometry of certain invariant manifolds, known as carrying simplices, for 3-species competitive Kolmogorov-type maps. We show that if all planes whose normal bundles are contained in a fixed closed and solid convex cone are rendered convex (concave) surfaces by the map, then, if there is a carrying simplex, it is a convex (concave) surface. We apply our results to the May-Leonard map.

Citation: Stephen Baigent. Convex geometry of the carrying simplex for the May-Leonard map. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1697-1723. doi: 10.3934/dcdsb.2018288
##### References:

show all references

##### References:
Carrying simplices for the May-Leonard model (8) with $r = 2$. Left: Convex carrying simplex for $\alpha = 3/4, \beta = 2/3$ (see example 11.2). Right: Concave carrying simplex $\alpha = 5/4, \beta = 7/6$ (see example 11.1)
Mapping of $\Delta({\pmb{a}} )$ by ${\pmb T}$ to the new set ${\pmb T}(\Delta({\pmb{a}} ))$
Bounds on the intersection of planes with the axes. Left figure: Convex surface, $0 < x_{\min} < x_{\max} < q_1$. Right figure: Concave surface, $q_1 < x_{\min} < x_{\max}$
Carrying simplices for the May-Leonard model (8) with $r = 2$. Top left: $\alpha = 4/5, \beta = 3/4$. Top right: $\alpha = 2/3, \beta = 7/12$, Bottom left: $\alpha = 7/5, \beta = 4/3$. Bottom right: $\alpha = 3/2, \beta = 7/5$
 [1] Lih-Ing W. Roeger. Discrete May-Leonard competition models II. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 841-860. doi: 10.3934/dcdsb.2005.5.841 [2] Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 [3] George Osipenko. Linearization near a locally nonunique invariant manifold. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 189-205. doi: 10.3934/dcds.1997.3.189 [4] Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure & Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433 [5] Marie-Claude Arnaud. A nondifferentiable essential irrational invariant curve for a $C^1$ symplectic twist map. Journal of Modern Dynamics, 2011, 5 (3) : 583-591. doi: 10.3934/jmd.2011.5.583 [6] Amadeu Delshams, Marian Gidea, Pablo Roldán. Transition map and shadowing lemma for normally hyperbolic invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1089-1112. doi: 10.3934/dcds.2013.33.1089 [7] Mari Paz Calvo, Jesus M. Sanz-Serna. Carrying an inverted pendulum on a bumpy road. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 429-438. doi: 10.3934/dcdsb.2010.14.429 [8] Washiela Fish, Jennifer D. Key, Eric Mwambene. Partial permutation decoding for simplex codes. Advances in Mathematics of Communications, 2012, 6 (4) : 505-516. doi: 10.3934/amc.2012.6.505 [9] Ricardo Diaz and Sinai Robins. The Ehrhart polynomial of a lattice n -simplex. Electronic Research Announcements, 1996, 2: 1-6. [10] Alexander J. Zaslavski. Good programs in the RSS model without concavity of a utility function. Journal of Industrial & Management Optimization, 2006, 2 (4) : 399-423. doi: 10.3934/jimo.2006.2.399 [11] Hans-Christoph Grunau, Guido Sweers. A clamped plate with a uniform weight may change sign. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 761-766. doi: 10.3934/dcdss.2014.7.761 [12] Baojun Bian, Pengfei Guan. A structural condition for microscopic convexity principle. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 789-807. doi: 10.3934/dcds.2010.28.789 [13] Arrigo Cellina, Carlo Mariconda, Giulia Treu. Comparison results without strict convexity. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 57-65. doi: 10.3934/dcdsb.2009.11.57 [14] Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial & Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251 [15] E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics & Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010 [16] Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249 [17] Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557 [18] Lucas Chesnel, Sergei A. Nazarov. Team organization may help swarms of flies to become invisible in closed waveguides. Inverse Problems & Imaging, 2016, 10 (4) : 977-1006. doi: 10.3934/ipi.2016029 [19] Paul Fife, Joseph Klewicki, Tie Wei. Time averaging in turbulence settings may reveal an infinite hierarchy of length scales. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 781-807. doi: 10.3934/dcds.2009.24.781 [20] Michael Kühn. Power- and Log-concavity of viscosity solutions to some elliptic Dirichlet problems. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2773-2788. doi: 10.3934/cpaa.2018131

2018 Impact Factor: 1.008