
Previous Article
Global dynamics and travelling wave solutions for a class of noncooperative reactiondiffusion systems with nonlocal infections
 DCDSB Home
 This Issue

Next Article
Stochastic nonautonomous Holling typeⅢ preypredator model with predator's intraspecific competition
Partial control of chaos: How to avoid undesirable behaviors with small controls in presence of noise
1.  Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain 
2.  Institute for New Economic Thinking at the Oxford Martin School, Mathematical Institute, University of Oxford, Walton Well Road, Eagle House OX2 6ED, Oxford, UK 
3.  Department of Applied Informatics, Kaunas University of Technology, Studentu 50415, Kaunas LT51368, Lithuania 
4.  Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA 
The presence of a nonattractive chaotic set, also called chaotic saddle, in phase space implies the appearance of a finite time kind of chaos that is known as transient chaos. For a given dynamical system in a certain region of phase space with transient chaos, trajectories eventually abandon the chaotic region escaping to an external attractor, if no external intervention is done on the system. In some situations, this attractor may involve an undesirable behavior, so the application of a control in the system is necessary to avoid it. Both, the nonattractive nature of transient chaos and eventually the presence of noise may hinder this task. Recently, a new method to control chaos called partial control has been developed. The method is based on the existence of a set, called the safe set, that allows to sustain transient chaos by only using a small amount of control. The surprising result is that the trajectories can be controlled by using an amount of control smaller than the amount of noise affecting it. We present here a broad survey of results of this control method applied to a wide variety of dynamical systems. We also review here all the variations of the partial control method that have been developed so far. In all the cases various systems of different dimensionality are treated in order to see the potential of this method. We believe that this method is a step forward in controlling chaos in presence of disturbances.
References:
[1] 
J. Aguirre and M. A. F. Sanjuán, Unpredictable behavior in the duffing oscillator: Wada Basins, Physica D, 171 (2002), 4151. doi: 10.1016/S01672789(02)005651. Google Scholar 
[2] 
D. P. Bertsekas, Infinitetime reachability of statespace regions by using feedback control, IEEE Trans. Autom. Control, 17 (1972), 604613. Google Scholar 
[3] 
D. P. Bertsekas and I. B. Rhodes, On the minimax reachability of target set and target tubes, Automatica, 7 (1971), 233247. doi: 10.1016/00051098(71)900665. Google Scholar 
[4] 
F. Blanchini, Set invariance in control, Automatica, 35 (1999), 17471767. doi: 10.1016/S00051098(99)001132. Google Scholar 
[5] 
R. Capeáns, J. Sabuco and M. A. F. Sanjuán, Parametric partial control of chaotic systems, Nonlinear Dyn., 86 (2016), 869876. doi: 10.1007/s1107101629294. Google Scholar 
[6] 
R. Capeáns, J. Sabuco and M. A. F. Sanjuán, When less is more: Partial control to avoid extinction of predators in an ecological model, Ecol. Complex., 19 (2014), 18. Google Scholar 
[7] 
R. Capeáns, J. Sabuco, M. A. F. Sanjuán and J. A. Yorke, Partially controlling transient chaos in the Lorenz equations, Phil. Trans. R. Soc. A, 375 (2017), 20160211, 18pp. doi: 10.1098/rsta.2016.0211. Google Scholar 
[8] 
R. Capeáns, J. Sabuco and M. A. F. Sanjuán, Parametric partial control of chaotic systems, Nonlinear Dyn., 2 (2016), 869876. doi: 10.1007/s1107101629294. Google Scholar 
[9] 
R. Capeáns, J. Sabuco, M. A. F. Sanjuán and J. A. Yorke, Partial control of delaycoordinate maps, Nonlinear Dyn, (2018), 111. Google Scholar 
[10] 
D. Dangoisse, P. Glorieux and D. Hannequin, Laser chaotic attractors in crisis, Phys. Rev. Lett., 57 (1986), 26572660. doi: 10.1103/PhysRevLett.57.2657. Google Scholar 
[11] 
M. Dhamala and Y. C. Lai, Controlling transient chaos in deterministic flows with applications. to electrical power systems and ecology, Phys. Rev. E, 59 (1999), 16461655. doi: 10.1103/PhysRevE.59.1646. Google Scholar 
[12] 
J. Duarte, C. Januário, N. Martins and J. Sardanyés, Chaos and crises in a model for cooperative hunting:a symbolic dynamics approach, Chaos, 58 (2009), 863883. Google Scholar 
[13] 
R. Genesio, M. Tartaglia and A. Vicino, On the estimate of asymptotic stability regions: Stateof art and new proposal, IEEE Trans. Autom. Control, 30 (1985), 747755. doi: 10.1109/TAC.1985.1104057. Google Scholar 
[14] 
P. Holmes, A Nonlinear Oscillator with a Strange Attractor, Phil. Trans. R. Soc. Soc. Lond. Ser. A, 292 (1979), 419448. doi: 10.1098/rsta.1979.0068. Google Scholar 
[15] 
V. Hutson and K. Schmitt, Permanence and the dynamics of biological systems, Math. Biosci., 111 (1992), 171. doi: 10.1016/00255564(92)90078B. Google Scholar 
[16] 
V. In, M. L. Spano, J. D. Neff, W. L. Ditto, C. S. Daw, K. D. Edwards and K. Nguyen, Maintenance of chaos in a computational model of thermal pulse combustor, Chaos, 7 (1997), 605613. doi: 10.1063/1.166260. Google Scholar 
[17] 
J. Jacobs, E. Ott, T. Antonsen and J. A. Yorke, Modeling fractal entrainment sets of tracers advected by chaotic temporally irregular fluid flows using random maps, Physica D, 110 (1997), 117. doi: 10.1016/S01672789(97)00122X. Google Scholar 
[18] 
J. L. Kaplan and J. A. Yorke, Preturbulence: A regime observed in a fluid flow model of Lorenz, Commun. Math. Phys., 67 (1979), 93108. doi: 10.1007/BF01221359. Google Scholar 
[19] 
I. V. Kolmanovski and E. G. Gilbert, Multimode regulators for systems with state and control constraints and disturbance inputs, Control Using Logicbased Switching (Block Island, RI, 1995), 104117, Lect. Notes Control Inf. Sci., 222, Springer, London, 1997. doi: 10.1007/BFb0036088. Google Scholar 
[20] 
K. McCann and P. Yodzis, Bifurcation structure of a threespecies food chain model, Theo. Pop. Biol., 48 (1995), 93125. doi: 10.1006/tpbi.1995.1023. Google Scholar 
[21] 
M. Nagumo, Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen, Proc. Phys.Math. Soc. Japan, 24 (1942), 551559. Google Scholar 
[22] 
Z. Neufeld and T. Tél, Advection in chaotically timedependent open flows, Phys.Rev.E, 57 (1995), 28322842. doi: 10.1103/PhysRevE.57.2832. Google Scholar 
[23] 
E. Ott, C. Grebogi and J. A. Yorke, Controlling chaos, Phys. Rev. Lett., 64 (1990), 11961199. doi: 10.1103/PhysRevLett.64.1196. Google Scholar 
[24] 
M. Perc and M. Marhl, Chaos in temporarily destabilized regular systems with the slow passage effect, Chaos Soliton Fract., 27 (2006), 395403. doi: 10.1016/j.chaos.2005.03.045. Google Scholar 
[25] 
J. Sabuco, S. Zambrano, M. A. F. Sanjuán and J. A. Yorke, Finding safety in partially controllable chaotic systems, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 42744280. doi: 10.1016/j.cnsns.2012.02.033. Google Scholar 
[26] 
J. Sabuco, S. Zambrano, M. A. F. Sanjuán and J. A. Yorke, Dynamics of partial control, Chaos, 22 (2012), 047507, 9pp. doi: 10.1063/1.4754874. Google Scholar 
[27] 
M. A. F. Sanjuán, J. Kennedy, C. Grebogi and J. A. Yorke, Indecomposable continua in dynamical systems with noise: Fluid flow past an array of cylinders, Chaos, 7 (1997), 125138. doi: 10.1063/1.166244. Google Scholar 
[28] 
M. A. F. Sanjuán, J. Kennedy, E. Ott and J. A. Yorke, Indecomposable Continua and the characterization of strange sets in Nonlinear Dynamics, Phys. Rev. Lett., 78 (1997), 18921895. Google Scholar 
[29] 
I. B. Schwartz and I. Triandaf, The slow invariant manifold of a conservative pendulumoscillator system, Int. J. Bifurcation Chaos, 6 (1996), 673692. Google Scholar 
[30] 
I. B. Schwartz and I. Triandaf, Sustainning chaos by using basin boundary saddles, Phys. Rev. Lett., 77 (1996), 47404743. Google Scholar 
[31] 
S.F. Wang, X.C. Li, F. Xia and Z.S. Xie, The novel control method of three dimensional discrete hyperchaotic Hénon map, Appl.Math.Comput, 247 (2014), 487493. doi: 10.1016/j.amc.2014.09.011. Google Scholar 
[32] 
W. Yang, M. Ding, A. J. Mandell and E. Ott, Preserving chaos: Control strategies to preserve complex dynamics with potential relevance to biological disorders, Phys. Rev. E, 51 (1995), 102110. doi: 10.1103/PhysRevE.51.102. Google Scholar 
[33] 
J. A. Yorke and E. D. Yorke, Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model, J. Stat. Phys., 21 (1979), 263277. doi: 10.1007/BF01011469. Google Scholar 
show all references
References:
[1] 
J. Aguirre and M. A. F. Sanjuán, Unpredictable behavior in the duffing oscillator: Wada Basins, Physica D, 171 (2002), 4151. doi: 10.1016/S01672789(02)005651. Google Scholar 
[2] 
D. P. Bertsekas, Infinitetime reachability of statespace regions by using feedback control, IEEE Trans. Autom. Control, 17 (1972), 604613. Google Scholar 
[3] 
D. P. Bertsekas and I. B. Rhodes, On the minimax reachability of target set and target tubes, Automatica, 7 (1971), 233247. doi: 10.1016/00051098(71)900665. Google Scholar 
[4] 
F. Blanchini, Set invariance in control, Automatica, 35 (1999), 17471767. doi: 10.1016/S00051098(99)001132. Google Scholar 
[5] 
R. Capeáns, J. Sabuco and M. A. F. Sanjuán, Parametric partial control of chaotic systems, Nonlinear Dyn., 86 (2016), 869876. doi: 10.1007/s1107101629294. Google Scholar 
[6] 
R. Capeáns, J. Sabuco and M. A. F. Sanjuán, When less is more: Partial control to avoid extinction of predators in an ecological model, Ecol. Complex., 19 (2014), 18. Google Scholar 
[7] 
R. Capeáns, J. Sabuco, M. A. F. Sanjuán and J. A. Yorke, Partially controlling transient chaos in the Lorenz equations, Phil. Trans. R. Soc. A, 375 (2017), 20160211, 18pp. doi: 10.1098/rsta.2016.0211. Google Scholar 
[8] 
R. Capeáns, J. Sabuco and M. A. F. Sanjuán, Parametric partial control of chaotic systems, Nonlinear Dyn., 2 (2016), 869876. doi: 10.1007/s1107101629294. Google Scholar 
[9] 
R. Capeáns, J. Sabuco, M. A. F. Sanjuán and J. A. Yorke, Partial control of delaycoordinate maps, Nonlinear Dyn, (2018), 111. Google Scholar 
[10] 
D. Dangoisse, P. Glorieux and D. Hannequin, Laser chaotic attractors in crisis, Phys. Rev. Lett., 57 (1986), 26572660. doi: 10.1103/PhysRevLett.57.2657. Google Scholar 
[11] 
M. Dhamala and Y. C. Lai, Controlling transient chaos in deterministic flows with applications. to electrical power systems and ecology, Phys. Rev. E, 59 (1999), 16461655. doi: 10.1103/PhysRevE.59.1646. Google Scholar 
[12] 
J. Duarte, C. Januário, N. Martins and J. Sardanyés, Chaos and crises in a model for cooperative hunting:a symbolic dynamics approach, Chaos, 58 (2009), 863883. Google Scholar 
[13] 
R. Genesio, M. Tartaglia and A. Vicino, On the estimate of asymptotic stability regions: Stateof art and new proposal, IEEE Trans. Autom. Control, 30 (1985), 747755. doi: 10.1109/TAC.1985.1104057. Google Scholar 
[14] 
P. Holmes, A Nonlinear Oscillator with a Strange Attractor, Phil. Trans. R. Soc. Soc. Lond. Ser. A, 292 (1979), 419448. doi: 10.1098/rsta.1979.0068. Google Scholar 
[15] 
V. Hutson and K. Schmitt, Permanence and the dynamics of biological systems, Math. Biosci., 111 (1992), 171. doi: 10.1016/00255564(92)90078B. Google Scholar 
[16] 
V. In, M. L. Spano, J. D. Neff, W. L. Ditto, C. S. Daw, K. D. Edwards and K. Nguyen, Maintenance of chaos in a computational model of thermal pulse combustor, Chaos, 7 (1997), 605613. doi: 10.1063/1.166260. Google Scholar 
[17] 
J. Jacobs, E. Ott, T. Antonsen and J. A. Yorke, Modeling fractal entrainment sets of tracers advected by chaotic temporally irregular fluid flows using random maps, Physica D, 110 (1997), 117. doi: 10.1016/S01672789(97)00122X. Google Scholar 
[18] 
J. L. Kaplan and J. A. Yorke, Preturbulence: A regime observed in a fluid flow model of Lorenz, Commun. Math. Phys., 67 (1979), 93108. doi: 10.1007/BF01221359. Google Scholar 
[19] 
I. V. Kolmanovski and E. G. Gilbert, Multimode regulators for systems with state and control constraints and disturbance inputs, Control Using Logicbased Switching (Block Island, RI, 1995), 104117, Lect. Notes Control Inf. Sci., 222, Springer, London, 1997. doi: 10.1007/BFb0036088. Google Scholar 
[20] 
K. McCann and P. Yodzis, Bifurcation structure of a threespecies food chain model, Theo. Pop. Biol., 48 (1995), 93125. doi: 10.1006/tpbi.1995.1023. Google Scholar 
[21] 
M. Nagumo, Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen, Proc. Phys.Math. Soc. Japan, 24 (1942), 551559. Google Scholar 
[22] 
Z. Neufeld and T. Tél, Advection in chaotically timedependent open flows, Phys.Rev.E, 57 (1995), 28322842. doi: 10.1103/PhysRevE.57.2832. Google Scholar 
[23] 
E. Ott, C. Grebogi and J. A. Yorke, Controlling chaos, Phys. Rev. Lett., 64 (1990), 11961199. doi: 10.1103/PhysRevLett.64.1196. Google Scholar 
[24] 
M. Perc and M. Marhl, Chaos in temporarily destabilized regular systems with the slow passage effect, Chaos Soliton Fract., 27 (2006), 395403. doi: 10.1016/j.chaos.2005.03.045. Google Scholar 
[25] 
J. Sabuco, S. Zambrano, M. A. F. Sanjuán and J. A. Yorke, Finding safety in partially controllable chaotic systems, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 42744280. doi: 10.1016/j.cnsns.2012.02.033. Google Scholar 
[26] 
J. Sabuco, S. Zambrano, M. A. F. Sanjuán and J. A. Yorke, Dynamics of partial control, Chaos, 22 (2012), 047507, 9pp. doi: 10.1063/1.4754874. Google Scholar 
[27] 
M. A. F. Sanjuán, J. Kennedy, C. Grebogi and J. A. Yorke, Indecomposable continua in dynamical systems with noise: Fluid flow past an array of cylinders, Chaos, 7 (1997), 125138. doi: 10.1063/1.166244. Google Scholar 
[28] 
M. A. F. Sanjuán, J. Kennedy, E. Ott and J. A. Yorke, Indecomposable Continua and the characterization of strange sets in Nonlinear Dynamics, Phys. Rev. Lett., 78 (1997), 18921895. Google Scholar 
[29] 
I. B. Schwartz and I. Triandaf, The slow invariant manifold of a conservative pendulumoscillator system, Int. J. Bifurcation Chaos, 6 (1996), 673692. Google Scholar 
[30] 
I. B. Schwartz and I. Triandaf, Sustainning chaos by using basin boundary saddles, Phys. Rev. Lett., 77 (1996), 47404743. Google Scholar 
[31] 
S.F. Wang, X.C. Li, F. Xia and Z.S. Xie, The novel control method of three dimensional discrete hyperchaotic Hénon map, Appl.Math.Comput, 247 (2014), 487493. doi: 10.1016/j.amc.2014.09.011. Google Scholar 
[32] 
W. Yang, M. Ding, A. J. Mandell and E. Ott, Preserving chaos: Control strategies to preserve complex dynamics with potential relevance to biological disorders, Phys. Rev. E, 51 (1995), 102110. doi: 10.1103/PhysRevE.51.102. Google Scholar 
[33] 
J. A. Yorke and E. D. Yorke, Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model, J. Stat. Phys., 21 (1979), 263277. doi: 10.1007/BF01011469. Google Scholar 
[1] 
Kaijen Cheng, Kenneth Palmer, YuhJenn Wu. Period 3 and chaos for unimodal maps. Discrete & Continuous Dynamical Systems  A, 2014, 34 (5) : 19331949. doi: 10.3934/dcds.2014.34.1933 
[2] 
Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete & Continuous Dynamical Systems  B, 2015, 20 (2) : 373383. doi: 10.3934/dcdsb.2015.20.373 
[3] 
KangLing Liao, ChihWen Shih, ChiJer Yu. The snapback repellers for chaos in multidimensional maps. Journal of Computational Dynamics, 2018, 5 (1&2) : 8192. doi: 10.3934/jcd.2018004 
[4] 
Alfonso RuizHerrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems  A, 2013, 33 (4) : 16331644. doi: 10.3934/dcds.2013.33.1633 
[5] 
Carolina Mendoza, Jean Bragard, Pier Luigi Ramazza, Javier MartínezMardones, Stefano Boccaletti. Pinning control of spatiotemporal chaos in the LCLV device. Mathematical Biosciences & Engineering, 2007, 4 (3) : 523530. doi: 10.3934/mbe.2007.4.523 
[6] 
Olivier P. Le Maître, Lionel Mathelin, Omar M. Knio, M. Yousuff Hussaini. Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete & Continuous Dynamical Systems  A, 2010, 28 (1) : 199226. doi: 10.3934/dcds.2010.28.199 
[7] 
Dmitry Turaev, Sergey Zelik. Analytical proof of spacetime chaos in GinzburgLandau equations. Discrete & Continuous Dynamical Systems  A, 2010, 28 (4) : 17131751. doi: 10.3934/dcds.2010.28.1713 
[8] 
Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems  A, 2015, 35 (2) : 757770. doi: 10.3934/dcds.2015.35.757 
[9] 
Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete & Continuous Dynamical Systems  B, 2007, 7 (2) : 275284. doi: 10.3934/dcdsb.2007.7.275 
[10] 
Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic & Related Models, 2010, 3 (1) : 85122. doi: 10.3934/krm.2010.3.85 
[11] 
Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161184. doi: 10.3934/mbe.2004.1.161 
[12] 
Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete & Continuous Dynamical Systems  A, 2010, 26 (4) : 13831398. doi: 10.3934/dcds.2010.26.1383 
[13] 
Kaijen Cheng, Kenneth Palmer. Chaos in a model for masting. Discrete & Continuous Dynamical Systems  B, 2015, 20 (7) : 19171932. doi: 10.3934/dcdsb.2015.20.1917 
[14] 
Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete & Continuous Dynamical Systems  S, 2013, 6 (4) : 861890. doi: 10.3934/dcdss.2013.6.861 
[15] 
J. Alberto Conejero, Francisco Rodenas, Macarena Trujillo. Chaos for the Hyperbolic Bioheat Equation. Discrete & Continuous Dynamical Systems  A, 2015, 35 (2) : 653668. doi: 10.3934/dcds.2015.35.653 
[16] 
Ghassen Askri. LiYorke chaos for dendrite maps with zero topological entropy and ωlimit sets. Discrete & Continuous Dynamical Systems  A, 2017, 37 (6) : 29572976. doi: 10.3934/dcds.2017127 
[17] 
Jianlu Zhang. Suspension of the billiard maps in the Lazutkin's coordinate. Discrete & Continuous Dynamical Systems  A, 2017, 37 (4) : 22272242. doi: 10.3934/dcds.2017096 
[18] 
Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations & Control Theory, 2016, 5 (1) : 105134. doi: 10.3934/eect.2016.5.105 
[19] 
José Miguel Pasini, Tuhin Sahai. Polynomial chaos based uncertainty quantification in Hamiltonian, multitime scale, and chaotic systems. Journal of Computational Dynamics, 2014, 1 (2) : 357375. doi: 10.3934/jcd.2014.1.357 
[20] 
E.V. Presnov, Z. Agur. The Role Of Time Delays, Slow Processes And Chaos In Modulating The CellCycle Clock. Mathematical Biosciences & Engineering, 2005, 2 (3) : 625642. doi: 10.3934/mbe.2005.2.625 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]