October  2018, 23(8): 3461-3482. doi: 10.3934/dcdsb.2018234

Synchronization in networks with strongly delayed couplings

1. 

Associate Laboratory of Applied Computing and Mathematics - LAC, National Institute for Space Research - INPE, Av. dos Astronautas, 1758, São José dos Campos-SP, 12227-010, Brazil

2. 

Institute of Mathematics and Computer Sciences - ICMC, University of São Paulo - USP, Av. do Trabalhador São-Carlense 400, São Carlos-SP, 13566-590, Brazil

3. 

Institute of Mathematics, Technical University of Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany

1Current address: Department of Mathematics and Statistics, State University of Rio Grande do Norte - UERN, Mossoró-RN, 59610-210 Brazil

Received  September 2017 Revised  April 2018 Published  August 2018

We investigate the stability of synchronization in networks of dynamical systems with strongly delayed connections. We obtain strict conditions for synchronization of periodic and equilibrium solutions. In particular, we show the existence of a critical coupling strength $κ_{c}$, depending only on the network structure, isolated dynamics and coupling function, such that for large delay and coupling strength $κ<κ_{c}$, the network possesses stable synchronization. The critical coupling $κ_{c}$ can be chosen independently of the delay for the case of equilibria, while for the periodic solution, $κ_{c}$ depends essentially on the delay and vanishes as the delay increases. We observe that, for random networks, the synchronization interval is maximal when the network is close to the connectivity threshold. We also derive scaling of the coupling parameter that allows for a synchronization of large networks for different network topologies.

Citation: Daniel M. N. Maia, Elbert E. N. Macau, Tiago Pereira, Serhiy Yanchuk. Synchronization in networks with strongly delayed couplings. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3461-3482. doi: 10.3934/dcdsb.2018234
References:
[1]

A. ArenasA. Díaz-GuileraJ. KurthsY. Moreno and C. Zhou, Synchronization in complex networks, Physics Reports, 469 (2008), 93-153. doi: 10.1016/j.physrep.2008.09.002. Google Scholar

[2]

A. ArgyrisD. SyvridisL. LargerV. Annovazzi-LodiP. ColetI. FischerJ. Garcia-OjalvoC. R. MirassoL. Pesquera and K. A. Shore, Chaos-based communications at high bit rates using commercial fibre-optic links, Nature, 438 (2005), 343-346. doi: 10.1038/nature04275. Google Scholar

[3]

L. W. Beineke and R. J. Wilson, Topics in Algebraic Graph Theory, Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2004. doi: 10.1017/CBO9780511529993. Google Scholar

[4]

S. BoccalettiV. LatoraY. MorenoM. Chavez and D. Hwang, Complex networks: Structure and dynamics, Physics Reports, 424 (2006), 175-308. doi: 10.1016/j.physrep.2005.10.009. Google Scholar

[5]

B. Bollobás, Random graphs, Combinatorics (Swansea, 1981), London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge-New York, 52 (1981), 80-102. Google Scholar

[6]

A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext. Springer New York, 2011. doi: 10.1007/978-1-4614-1939-6. Google Scholar

[7]

S. A. CampbellI. Ncube and J. Wu, Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system, Physica D: Nonlinear Phenomena, 214 (2006), 101-119. doi: 10.1016/j.physd.2005.12.008. Google Scholar

[8]

P. Colet and R. Roy, Digital communication with synchronized chaotic lasers, Opt. Lett., 19 (1994), 2056-2058. doi: 10.1364/OL.19.002056. Google Scholar

[9]

T. Dahms, J. Lehnert and E. Schöll, Cluster and group synchronization in delay-coupled networks, Phys. Rev. E, 86 (2012), 016202. doi: 10.1103/PhysRevE.86.016202. Google Scholar

[10]

T. Erneux, Applied Delay Differential Equations, volume 3 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer, 2009. Google Scholar

[11]

B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H. -J. Wünsche and E. Schöll, Delay stabilization of rotating waves near fold bifurcation and application to all-optical control of a semiconductor laser, Phys. Rev. E, 77 (2008), 066207, 9pp. doi: 10.1103/PhysRevE.77.066207. Google Scholar

[12]

M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal, 23 (1973), 298-305. Google Scholar

[13]

V. Flunkert, S. Yanchuk, T. Dahms and E. Schöll, Synchronizing distant nodes: A universal classification of networks, Phys. Rev. Lett. , 105 (2010), 254101. doi: 10.1103/PhysRevLett.105.254101. Google Scholar

[14]

S. Fortunato, Community detection in graphs, Physics Reports, 486 (2010), 75-174. doi: 10.1016/j.physrep.2009.11.002. Google Scholar

[15]

J. Foss and J. Milton, Multistability in recurrent neural loops arising from delay, J Neurophysiol, 84 (2000), 975-985. doi: 10.1152/jn.2000.84.2.975. Google Scholar

[16]

E. Fridman, Tutorial on lyapunov-based methods for time-delay systems, European Journal of Control, 20 (2014), 271-283. doi: 10.1016/j.ejcon.2014.10.001. Google Scholar

[17]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993. doi: 10.1007/978-1-4612-4342-7. Google Scholar

[18]

J. D. Hart, J. P. Pade, T. Pereira, T. E. Murphy and R. Roy, Adding connections can hinder network synchronization of time-delayed oscillators, Phys. Rev. E, 92 (2015), 022804. doi: 10.1103/PhysRevE.92.022804. Google Scholar

[19]

S. Heiligenthal, T. Dahms, S. Yanchuk, T. Jüngling, V. Flunkert, I. Kanter, E. Schöll and W. Kinzel, Strong and weak chaos in nonlinear networks with time-delayed couplings, Phys. Rev. Lett. , 107 (2011), 234102. doi: 10.1103/PhysRevLett.107.234102. Google Scholar

[20]

E. M. Izhikevich, Polychronization: Computation with spikes, Neural Computation, 18 (2006), 245-282. doi: 10.1162/089976606775093882. Google Scholar

[21]

J. Javaloyes, P. Mandel and D. Pieroux, Dynamical properties of lasers coupled face to face, Phys. Rev. E, 67 (2003), 036201. doi: 10.1103/PhysRevE.67.036201. Google Scholar

[22]

W. Kinzel, A. Englert, G. Reents, M. Zigzag, and I. Kanter, Synchronization of networks of chaotic units with time-delayed couplings, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 79 (2009), 056207. doi: 10.1103/PhysRevE.79.056207. Google Scholar

[23]

M. LichtnerM. Wolfrum and S. Yanchuk, The spectrum of delay differential equations with large delay, SIAM J. Math. Anal., 43 (2011), 788-802. doi: 10.1137/090766796. Google Scholar

[24]

L. Lücken, J. P. Pade, K. Knauer and S. Yanchuk, Reduction of interaction delays in networks, EPL (Europhysics Letters), 103 (2013), 10006.Google Scholar

[25]

D. N. M. MaiaE. E. N. Macau and T. Pereira, Persistence of network synchronization under nonidentical coupling functions, SIAM J. Appl. Dyn. Syst., 15 (2016), 1563-1580. doi: 10.1137/15M1049786. Google Scholar

[26]

T. F. Móri, The maximum degree of the barabási-albert random tree, Comb. Probab. Comput., 14 (2005), 339-348. doi: 10.1017/S0963548304006133. Google Scholar

[27]

M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167-256. doi: 10.1137/S003614450342480. Google Scholar

[28]

G. OroszR. E. Wilson and G. Stepan, Traffic jams: dynamics and control, Phil. Trans. R. Soc. A, 368 (2010), 4455-4479. doi: 10.1098/rsta.2010.0205. Google Scholar

[29]

T. PereiraJ. ElderingM. Rasmussen and A. Veneziani, Towards a theory for diffusive coupling functions allowing persistent synchronization, Nonlinearity, 27 (2014), 501-525. doi: 10.1088/0951-7715/27/3/501. Google Scholar

[30]

B. Ravoori, A. B. Cohen, J. Sun, A. E. Motter, T. E. Murphy and R. Roy, Robustness of optimal synchronization in real networks, Phys. Rev. Lett. , 107 (2011), 034102. doi: 10.1103/PhysRevLett.107.034102. Google Scholar

[31]

O. Riordan and A. Selby, The maximum degree of a random graph, Comb. Probab. Comput., 9 (2000), 549-572. doi: 10.1017/S0963548300004491. Google Scholar

[32]

F. A. RodriguesT. K. DM. PeronP. Ji and J. Kurths, The kuramoto model in complex networks, Physics Reports, 610 (2016), 1-98. doi: 10.1016/j.physrep.2015.10.008. Google Scholar

[33]

J. Schlesner, A. Amann, N. B. Janson, W. Just and E. Schöll, Self-stabilization of high-frequency oscillations in semiconductor superlattices by time-delay autosynchronization, Phys. Rev. E, 68 (2003), 066208. doi: 10.1103/PhysRevE.68.066208. Google Scholar

[34]

J. SieberM. WolfrumM. Lichtner and S. Yanchuk, On the stability of periodic orbits in delay equations with large delay, Discrete Contin. Dyn. Syst. A, 33 (2013), 3109-3134. doi: 10.3934/dcds.2013.33.3109. Google Scholar

[35]

W. Singer, Synchronization of cortical activity and its putative role in information processing and learning, Annu. Rev. Physiol., 55 (1993), 349-374. doi: 10.1146/annurev.ph.55.030193.002025. Google Scholar

[36]

H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, volume 57. Texts in Applied Mathematics, 57. Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8. Google Scholar

[37]

M. C. SorianoJ. Garcia-OjalvoC. R. Mirasso and I. Fischer, Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers, Rev. Mod. Phys., 85 (2013), 421-470. doi: 10.1103/RevModPhys.85.421. Google Scholar

[38]

E. SteurW. MichielsH. Huijberts and H. Nijmeijer, Networks of diffusively time-delay coupled systems: Conditions for synchronization and its relation to the network topology, Physica D, 277 (2014), 22-39. doi: 10.1016/j.physd.2014.03.004. Google Scholar

[39]

M. WolfrumS. YanchukP. Hövel and E. Schöll, Complex dynamics in delay-differential equations with large delay, Eur. Phys. J. Special Topics, 191 (2010), 91-103. doi: 10.1140/epjst/e2010-01343-7. Google Scholar

[40]

J. Wu, Symmetric functional differential equations and neural networks with memory, Transactions of the American Mathematical Society, 350 (1998), 4799-4838. doi: 10.1090/S0002-9947-98-02083-2. Google Scholar

[41]

S. Yanchuk and G. Giacomelli, Spatio-temporal phenomena in complex systems with time delays, Journal of Physics A: Mathematical and Theoretical, 50 (2017), 103001, 56pp. Google Scholar

[42]

S. Yanchuk and P. Perlikowski, Delay and periodicity, Phys. Rev. E, 79 (2009), 046221, 9pp. doi: 10.1103/PhysRevE.79.046221. Google Scholar

[43]

S. Yanchuk and M. Wolfrum, Instabilities of equilibria of delay-differential equations with large delay, In D. H. van Campen, M. D. Lazurko, and W. P. J. M. van der Oever, editors, Proceedings of ENOC-2005, pages 1060-1065, Eindhoven, Netherlands, August 2005.Google Scholar

show all references

References:
[1]

A. ArenasA. Díaz-GuileraJ. KurthsY. Moreno and C. Zhou, Synchronization in complex networks, Physics Reports, 469 (2008), 93-153. doi: 10.1016/j.physrep.2008.09.002. Google Scholar

[2]

A. ArgyrisD. SyvridisL. LargerV. Annovazzi-LodiP. ColetI. FischerJ. Garcia-OjalvoC. R. MirassoL. Pesquera and K. A. Shore, Chaos-based communications at high bit rates using commercial fibre-optic links, Nature, 438 (2005), 343-346. doi: 10.1038/nature04275. Google Scholar

[3]

L. W. Beineke and R. J. Wilson, Topics in Algebraic Graph Theory, Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2004. doi: 10.1017/CBO9780511529993. Google Scholar

[4]

S. BoccalettiV. LatoraY. MorenoM. Chavez and D. Hwang, Complex networks: Structure and dynamics, Physics Reports, 424 (2006), 175-308. doi: 10.1016/j.physrep.2005.10.009. Google Scholar

[5]

B. Bollobás, Random graphs, Combinatorics (Swansea, 1981), London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge-New York, 52 (1981), 80-102. Google Scholar

[6]

A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext. Springer New York, 2011. doi: 10.1007/978-1-4614-1939-6. Google Scholar

[7]

S. A. CampbellI. Ncube and J. Wu, Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system, Physica D: Nonlinear Phenomena, 214 (2006), 101-119. doi: 10.1016/j.physd.2005.12.008. Google Scholar

[8]

P. Colet and R. Roy, Digital communication with synchronized chaotic lasers, Opt. Lett., 19 (1994), 2056-2058. doi: 10.1364/OL.19.002056. Google Scholar

[9]

T. Dahms, J. Lehnert and E. Schöll, Cluster and group synchronization in delay-coupled networks, Phys. Rev. E, 86 (2012), 016202. doi: 10.1103/PhysRevE.86.016202. Google Scholar

[10]

T. Erneux, Applied Delay Differential Equations, volume 3 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer, 2009. Google Scholar

[11]

B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H. -J. Wünsche and E. Schöll, Delay stabilization of rotating waves near fold bifurcation and application to all-optical control of a semiconductor laser, Phys. Rev. E, 77 (2008), 066207, 9pp. doi: 10.1103/PhysRevE.77.066207. Google Scholar

[12]

M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal, 23 (1973), 298-305. Google Scholar

[13]

V. Flunkert, S. Yanchuk, T. Dahms and E. Schöll, Synchronizing distant nodes: A universal classification of networks, Phys. Rev. Lett. , 105 (2010), 254101. doi: 10.1103/PhysRevLett.105.254101. Google Scholar

[14]

S. Fortunato, Community detection in graphs, Physics Reports, 486 (2010), 75-174. doi: 10.1016/j.physrep.2009.11.002. Google Scholar

[15]

J. Foss and J. Milton, Multistability in recurrent neural loops arising from delay, J Neurophysiol, 84 (2000), 975-985. doi: 10.1152/jn.2000.84.2.975. Google Scholar

[16]

E. Fridman, Tutorial on lyapunov-based methods for time-delay systems, European Journal of Control, 20 (2014), 271-283. doi: 10.1016/j.ejcon.2014.10.001. Google Scholar

[17]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993. doi: 10.1007/978-1-4612-4342-7. Google Scholar

[18]

J. D. Hart, J. P. Pade, T. Pereira, T. E. Murphy and R. Roy, Adding connections can hinder network synchronization of time-delayed oscillators, Phys. Rev. E, 92 (2015), 022804. doi: 10.1103/PhysRevE.92.022804. Google Scholar

[19]

S. Heiligenthal, T. Dahms, S. Yanchuk, T. Jüngling, V. Flunkert, I. Kanter, E. Schöll and W. Kinzel, Strong and weak chaos in nonlinear networks with time-delayed couplings, Phys. Rev. Lett. , 107 (2011), 234102. doi: 10.1103/PhysRevLett.107.234102. Google Scholar

[20]

E. M. Izhikevich, Polychronization: Computation with spikes, Neural Computation, 18 (2006), 245-282. doi: 10.1162/089976606775093882. Google Scholar

[21]

J. Javaloyes, P. Mandel and D. Pieroux, Dynamical properties of lasers coupled face to face, Phys. Rev. E, 67 (2003), 036201. doi: 10.1103/PhysRevE.67.036201. Google Scholar

[22]

W. Kinzel, A. Englert, G. Reents, M. Zigzag, and I. Kanter, Synchronization of networks of chaotic units with time-delayed couplings, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 79 (2009), 056207. doi: 10.1103/PhysRevE.79.056207. Google Scholar

[23]

M. LichtnerM. Wolfrum and S. Yanchuk, The spectrum of delay differential equations with large delay, SIAM J. Math. Anal., 43 (2011), 788-802. doi: 10.1137/090766796. Google Scholar

[24]

L. Lücken, J. P. Pade, K. Knauer and S. Yanchuk, Reduction of interaction delays in networks, EPL (Europhysics Letters), 103 (2013), 10006.Google Scholar

[25]

D. N. M. MaiaE. E. N. Macau and T. Pereira, Persistence of network synchronization under nonidentical coupling functions, SIAM J. Appl. Dyn. Syst., 15 (2016), 1563-1580. doi: 10.1137/15M1049786. Google Scholar

[26]

T. F. Móri, The maximum degree of the barabási-albert random tree, Comb. Probab. Comput., 14 (2005), 339-348. doi: 10.1017/S0963548304006133. Google Scholar

[27]

M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167-256. doi: 10.1137/S003614450342480. Google Scholar

[28]

G. OroszR. E. Wilson and G. Stepan, Traffic jams: dynamics and control, Phil. Trans. R. Soc. A, 368 (2010), 4455-4479. doi: 10.1098/rsta.2010.0205. Google Scholar

[29]

T. PereiraJ. ElderingM. Rasmussen and A. Veneziani, Towards a theory for diffusive coupling functions allowing persistent synchronization, Nonlinearity, 27 (2014), 501-525. doi: 10.1088/0951-7715/27/3/501. Google Scholar

[30]

B. Ravoori, A. B. Cohen, J. Sun, A. E. Motter, T. E. Murphy and R. Roy, Robustness of optimal synchronization in real networks, Phys. Rev. Lett. , 107 (2011), 034102. doi: 10.1103/PhysRevLett.107.034102. Google Scholar

[31]

O. Riordan and A. Selby, The maximum degree of a random graph, Comb. Probab. Comput., 9 (2000), 549-572. doi: 10.1017/S0963548300004491. Google Scholar

[32]

F. A. RodriguesT. K. DM. PeronP. Ji and J. Kurths, The kuramoto model in complex networks, Physics Reports, 610 (2016), 1-98. doi: 10.1016/j.physrep.2015.10.008. Google Scholar

[33]

J. Schlesner, A. Amann, N. B. Janson, W. Just and E. Schöll, Self-stabilization of high-frequency oscillations in semiconductor superlattices by time-delay autosynchronization, Phys. Rev. E, 68 (2003), 066208. doi: 10.1103/PhysRevE.68.066208. Google Scholar

[34]

J. SieberM. WolfrumM. Lichtner and S. Yanchuk, On the stability of periodic orbits in delay equations with large delay, Discrete Contin. Dyn. Syst. A, 33 (2013), 3109-3134. doi: 10.3934/dcds.2013.33.3109. Google Scholar

[35]

W. Singer, Synchronization of cortical activity and its putative role in information processing and learning, Annu. Rev. Physiol., 55 (1993), 349-374. doi: 10.1146/annurev.ph.55.030193.002025. Google Scholar

[36]

H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, volume 57. Texts in Applied Mathematics, 57. Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8. Google Scholar

[37]

M. C. SorianoJ. Garcia-OjalvoC. R. Mirasso and I. Fischer, Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers, Rev. Mod. Phys., 85 (2013), 421-470. doi: 10.1103/RevModPhys.85.421. Google Scholar

[38]

E. SteurW. MichielsH. Huijberts and H. Nijmeijer, Networks of diffusively time-delay coupled systems: Conditions for synchronization and its relation to the network topology, Physica D, 277 (2014), 22-39. doi: 10.1016/j.physd.2014.03.004. Google Scholar

[39]

M. WolfrumS. YanchukP. Hövel and E. Schöll, Complex dynamics in delay-differential equations with large delay, Eur. Phys. J. Special Topics, 191 (2010), 91-103. doi: 10.1140/epjst/e2010-01343-7. Google Scholar

[40]

J. Wu, Symmetric functional differential equations and neural networks with memory, Transactions of the American Mathematical Society, 350 (1998), 4799-4838. doi: 10.1090/S0002-9947-98-02083-2. Google Scholar

[41]

S. Yanchuk and G. Giacomelli, Spatio-temporal phenomena in complex systems with time delays, Journal of Physics A: Mathematical and Theoretical, 50 (2017), 103001, 56pp. Google Scholar

[42]

S. Yanchuk and P. Perlikowski, Delay and periodicity, Phys. Rev. E, 79 (2009), 046221, 9pp. doi: 10.1103/PhysRevE.79.046221. Google Scholar

[43]

S. Yanchuk and M. Wolfrum, Instabilities of equilibria of delay-differential equations with large delay, In D. H. van Campen, M. D. Lazurko, and W. P. J. M. van der Oever, editors, Proceedings of ENOC-2005, pages 1060-1065, Eindhoven, Netherlands, August 2005.Google Scholar

Figure 6.5.  Synchronization map in the $\sigma\times\tau$ parameter space. The color scale represents $\Re(\lambda)<0$ in which $\lambda$ is a solution of (6.7) with maximal real part. The white color stands for the instability region ($\Re(\lambda)>0$). The parameters used were $\alpha = 1$ and $\beta = \pi$.
Figure 6.2.  Numerically-computed-spectrum}Numerically computed spectrum for the equilibrium of two Stuart-Landau oscillators (see Sec. 6) coupled as in (1.1) with identity coupling function and parameters $\alpha = 1$, $\beta = \pi$, $\tau = 20$, and $\kappa = 0.7$. The points approaching the curve on the left side of the figure belongs to the pseudo-continuous spectrum and the isolated points on the right belongs to the strongly unstable spectrum. Solid lines show the re-scaled asymptotic continuous spectrum $\Gamma_{A}$. The gray strip represents a break on the figure, which is necessary due to the different scales of the two parts of the spectrum.
Figure 6.1.  A directed ring network with 4 nodes.
Figure 6.3.  Time series of the synchronization error for Eq. (3.3) and network given in Fig. 6.1 where $\kappa = 0.49$ for the left figure and $\kappa = 0.51$ for the right. Other parameters are $\alpha = -1$, $\beta = \pi$, $\tau = 100$. The history functions were taken as constant and non-zero.
Figure 6.4.  The asymptotic continuous spectrum (blue lines) and the pseudo-continuous spectrum (red dots) for the periodic solution of Stuart-Landau system given by Eqs. (6.6) and (6.7) respectively. The parameters are $\sigma = -0.08$ (with $\mu = \rho_{L} = 2$, the spectral radius of the Laplacian matrix of the network in Fig. 6.1, and $\kappa = 0.04$), $\alpha = 1$, $\beta = \pi$ and $\tau = 20$.
Figure 6.6.  Characteristic time for the synchronization of two Stuart-Landau coupled oscillators. The red curve is $t_{\text{tr}}(\kappa) = 20\ln^{-1}(2\kappa)$. The blue dots were obtained by fixing $\kappa$ and computing $\eta$, which stands for the angular coefficient of Eq. (6.8) in log scale in which $||\xi(t)|| = ||x_{1}(t)-x_{2}(t)||$, and then taking $t_{\text{tr}} = 1/\eta$. The parameters used were $\alpha = -1$, $\beta = \pi$ and $\tau = 20$. The history functions were taken as constant and non-zero.
Figure 7.1.  Illustrations of a BA network (left) and an ER network (right), both with $n = 100$. Some hubs in the BA network are highlighted with black color and bigger size.
Table 7.1.  Laplacian spectral radius $\rho_{L}$ and synchronization window for the coupling parameter $\kappa$ (for strong delay) of some regular graphs.
Graph $\rho_{L}$ Synchronization window
Complete $n$ $(0, r_{0}/n)$
Ring $\begin{array}{l} {\rm{4}}\;{\rm{if}}\;{n}\;{\rm{is}}\;{\rm{even}}\\ 2 + 2\cos \left( {2{\rm{\pi }}/n} \right)\;{\rm{if}}\;{n}\;{\rm{is}}\;{\rm{odd}} \end{array}$ $(0, r_{0}/4)$ or $\left(0, r_{0}/(2+2\cos\left({2\pi}/{n}\right))\right)$
Star $n$ $(0, r_{0}/n)$
Path $2+2\cos\left({\pi}/{n}\right)$ $\left(0, r_{0}/\left(2+2\cos\left({\pi}/{n}\right)\right)\right)$
Graph $\rho_{L}$ Synchronization window
Complete $n$ $(0, r_{0}/n)$
Ring $\begin{array}{l} {\rm{4}}\;{\rm{if}}\;{n}\;{\rm{is}}\;{\rm{even}}\\ 2 + 2\cos \left( {2{\rm{\pi }}/n} \right)\;{\rm{if}}\;{n}\;{\rm{is}}\;{\rm{odd}} \end{array}$ $(0, r_{0}/4)$ or $\left(0, r_{0}/(2+2\cos\left({2\pi}/{n}\right))\right)$
Star $n$ $(0, r_{0}/n)$
Path $2+2\cos\left({\pi}/{n}\right)$ $\left(0, r_{0}/\left(2+2\cos\left({\pi}/{n}\right)\right)\right)$
[1]

Chol-Ung Choe, Thomas Dahms, Philipp Hövel, Eckehard Schöll. Control of synchrony by delay coupling in complex networks. Conference Publications, 2011, 2011 (Special) : 292-301. doi: 10.3934/proc.2011.2011.292

[2]

Qingyun Wang, Xia Shi, Guanrong Chen. Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 607-621. doi: 10.3934/dcdsb.2011.16.607

[3]

Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial & Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87

[4]

Michael Stich, Carsten Beta. Standing waves in a complex Ginzburg-Landau equation with time-delay feedback. Conference Publications, 2011, 2011 (Special) : 1329-1334. doi: 10.3934/proc.2011.2011.1329

[5]

Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393

[6]

Bernold Fiedler, Isabelle Schneider. Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-41. doi: 10.3934/dcdss.2020068

[7]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[8]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[9]

Benedetta Lisena. Average criteria for periodic neural networks with delay. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 761-773. doi: 10.3934/dcdsb.2014.19.761

[10]

Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen. A mathematical framework for delay analysis in single source networks. Networks & Heterogeneous Media, 2017, 12 (1) : 113-145. doi: 10.3934/nhm.2017005

[11]

Shuang Liu, Wenxue Li. Outer synchronization of delayed coupled systems on networks without strong connectedness: A hierarchical method. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 837-859. doi: 10.3934/dcdsb.2018045

[12]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[13]

István Győri, Yukihiko Nakata, Gergely Röst. Unbounded and blow-up solutions for a delay logistic equation with positive feedback. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2845-2854. doi: 10.3934/cpaa.2018134

[14]

Abdelkarim Kelleche, Nasser-Eddine Tatar. Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback. Evolution Equations & Control Theory, 2018, 7 (4) : 599-616. doi: 10.3934/eect.2018029

[15]

Qingwen Hu, Huan Zhang. Stabilization of turning processes using spindle feedback with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4329-4360. doi: 10.3934/dcdsb.2018167

[16]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[17]

Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks & Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597

[18]

Inmaculada Leyva, Irene Sendiña-Nadal, Stefano Boccaletti. Explosive synchronization in mono and multilayer networks. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1931-1944. doi: 10.3934/dcdsb.2018189

[19]

Benjamin B. Kennedy. A state-dependent delay equation with negative feedback and "mildly unstable" rapidly oscillating periodic solutions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1633-1650. doi: 10.3934/dcdsb.2013.18.1633

[20]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (34)
  • HTML views (68)
  • Cited by (0)

[Back to Top]