• Previous Article
    Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary
  • DCDS-B Home
  • This Issue
  • Next Article
    Global stabilization of the Navier-Stokes-Voight and the damped nonlinear wave equations by finite number of feedback controllers
May  2018, 23(3): 1297-1324. doi: 10.3934/dcdsb.2018152

Squeezing and finite dimensionality of cocycle attractors for 2D stochastic Navier-Stokes equation with non-autonomous forcing

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

Departamento de Matemática, Universidade Federal do Pará, Rua Augusto Corrêa s/n, 66000-000, Belém PA, Brazil

3. 

Departamento de Ecuaciones Diferenciales Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla, Spain

Dedicated to the memory of professor Igor Chueshov

Received  May 2017 Revised  September 2017 Published  February 2018

In this paper, we study the squeezing property and finite dimensionality of cocycle attractors for non-autonomous dynamical systems (NRDS). We show that the generalized random cocycle squeezing property (RCSP) is a sufficient condition to prove a determining modes result and the finite dimensionality of invariant non-autonomous random sets, where the upper bound of the dimension is uniform for all components of the invariant set. We also prove that the RCSP can imply the pullback flattening property in uniformly convex Banach space so that could also contribute to establish the asymptotic compactness of the system. The cocycle attractor for 2D Navier-Stokes equation with additive white noise and translation bounded non-autonomous forcing is studied as an application.

Citation: Hongyong Cui, Mirelson M. Freitas, José A. Langa. Squeezing and finite dimensionality of cocycle attractors for 2D stochastic Navier-Stokes equation with non-autonomous forcing. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1297-1324. doi: 10.3934/dcdsb.2018152
References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. Google Scholar

[2]

L. Arnold and I. Chueshov, Order-preserving random dynamical systems: Equilibria, attractors, applications, Dynam. Stability Systems, 13 (1998), 265-280. doi: 10.1080/02681119808806264. Google Scholar

[3]

T. CaraballoI. Chueshov and J. A. Langa, Existence of invariant manifolds for coupled parabolic and hyperbolic stochastic partial differential equations, Nonlinearity, 18 (2005), 747-767. doi: 10.1088/0951-7715/18/2/015. Google Scholar

[4]

D. Cheban and C. Mammana, Relation between different types of global attractors of set-valued nonautonomous dynamical systems, Set-Valued Analysis, 13 (2005), 291-321. doi: 10.1007/s11228-004-0046-x. Google Scholar

[5]

V. Chepyzhov and M. Vishik, A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations, Indiana Univ. Math. J., 42 (1993), 1057-1076. doi: 10.1512/iumj.1993.42.42049. Google Scholar

[6]

V. Chepyzhov and M. Vishik, Attractors of non-autonomous dynamical systems and their dimension, Journal de Mathématiques Pures et Appliquées, 73 (1994), 279-333. Google Scholar

[7]

_____, Attractors of non-autonomous evolution equations with translation compact symbols, in Partial Differential Operators and Mathematical Physics, Springer, 1995, 49-60.Google Scholar

[8]

V. Chepyzhov and M. Vishik, Attractors for nonautonomous Navier-Stokes system and other partial differential equations, in Instability in models connected with fluid flows. Ⅰ, vol. 6 of Int. Math. Ser. (N. Y. ), Springer, New York, 2008,135-265. Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl. (9), 73 (1994), 279-333. Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, vol. 49, American Mathematical Society Providence, RI, USA, 2002. Google Scholar

[11]

_____, Monotone Random Systems Theory and Applications, vol. 1779, Springer Science & Business Media, 2002. Google Scholar

[12]

_____, Invariant manifolds and nonlinear master-slave synchronization in coupled systems, Appl. Anal., 86 (2007), 269-286. doi: 10.1080/00036810601097629. Google Scholar

[13]

_____, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262. doi: 10.1016/j.jde.2011.08.022. Google Scholar

[14]

_____, A squeezing property and its applications to a description of long-time behaviour in the three-dimensional viscous primitive equations, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 711-729. doi: 10.1017/S0308210512001953. Google Scholar

[15]

_____, Dynamics of Quasi-Stable Dissipative Systems, Universitext, Springer, Cham, 2015. Google Scholar

[16]

I. ChueshovM. Eller and I. Lasiecka, Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation, Comm. Partial Differential Equations, 29 (2004), 1847-1876. Google Scholar

[17]

I. Chueshov and I. Lasiecka, Determining functionals for a class of second order in time evolution equations with applications to von Karman equations, in Analysis and optimization of differential systems (Constanta, 2002), Kluwer Acad. Publ., Boston, MA, 2003,109-122. Google Scholar

[18]

_____, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc. , 195 (2008), ⅷ+183pp.Google Scholar

[19]

_____, On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, Comm. Partial Differential Equations, 36 (2011), 67-99. Google Scholar

[20]

I. Chueshov and A. Rezounenko, Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay, Commun. Pure Appl. Anal., 14 (2015), 1685-1704. Google Scholar

[21]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004), 127-144. Google Scholar

[22]

I. D. Chueshov, Approximate inertial manifolds of exponential order for semilinear parabolic equations subjected to additive white noise, J. Dynam. Differential Equations, 7 (1995), 549-566. Google Scholar

[23]

_____, The theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems, Uspekhi Mat. Nauk, 53 (1998), 77-124. Google Scholar

[24]

_____, Vvedenie v Teoriyu Beskonechnomernykh Dissipativnykh Sistem, Universitetskie Lektsii po Sovremennoi Matematike. [University Lectures in Contemporary Mathematics], AKTA, Kharkiv, 1999.Google Scholar

[25]

M. Coti Zelati and P. Kalita, Minimality properties of set-valued processes and their pullback attractors, SIAM Journal on Mathematical Analysis, 47 (2015), 1530-1561. Google Scholar

[26]

H. CrauelA. Debussche and F. Flandoli, Random attractors, Journal of Dynamics and Differential Equations, 9 (1997), 307-341. Google Scholar

[27]

H. CrauelP. E. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stochastics & Dynamics, 11 (2011), 301-314. Google Scholar

[28]

H. CuiM. M. Freitas and J. A. Langa, On random cocycle attractors with autonomous attraction universes, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3379-3407. Google Scholar

[29]

H. Cui and J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, Journal of Differential Equations, 263 (2017), 1225-1268. Google Scholar

[30]

H. CuiJ. A. Langa and Y. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Analysis: Theory, Methods & Applications, 140 (2016), 208-235. Google Scholar

[31]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Analysis: Theory, Methods & Applications, 128 (2015), 303-324. Google Scholar

[32]

A. Debussche, On the finite dimensionality of random attractors, Stoch. Anal. Appl., 15 (1997), 473-491. Google Scholar

[33]

A. Eden, C. Foias, B. Nicolaenko and R. Teman, Exponential Attractors for Dissipative Evolution Equations, UK: RAM, Wiley, Chichester, 1994. Google Scholar

[34]

X. Fan, Attractors for a damped stochastic wave equation of the sine-Gordon type with sublinear multiplicative noise, Stochastic Analysis and Applications, 24 (2006), 767-793. Google Scholar

[35]

F. Flandoli and J. A. Langa, Determining modes for dissipative random dynamical systems, Stochastics: An International Journal of Probability and Stochastic Processes, 66 (1999), 1-25. Google Scholar

[36]

C. Foias and R. Teman, Some analytic and geometric properties of the solutions of the navier-stokes equations, J. Math. Pure Appl., 58 (1979), 339-368. Google Scholar

[37]

T. V. Girya and I. D. Chueshov, Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems, Mat. Sb., 186 (1995), 29-46. Google Scholar

[38]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 463, The Royal Society, 2007,163-181. Google Scholar

[39]

P. E. KloedenC. Pötzsche and M. Rasmussen, Limitations of pullback attractors for processes, Journal of Difference Equations and Applications, 18 (2012), 693-701. Google Scholar

[40]

J. A. LangaG.Ł ukaszewicz and J. Real, Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains, Nonlinear Anal., 66 (2007), 735-749. Google Scholar

[41]

J. A. LangaJ. C. RobinsonA. Rodriguez-BernalA. Suárez and A. Vidal-López, Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations, Discrete and Continuous Dynamical Systems. Series A, 18 (2007), 483-497. Google Scholar

[42]

Q. MaS. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541-1559. Google Scholar

[43]

G. Ochs, Weak Random Attractors, Citeseer, 1999.Google Scholar

[44]

J. C. Robinson, Infinite-dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, vol. 28, Cambridge University Press, 2001. Google Scholar

[45]

_____, Dimensions, Embeddings, and Attractors, Cambridge University Press Cambridge, 2010. Google Scholar

[46]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis North-Holland Pub. Co., Amsterdam, 1979. Google Scholar

[47]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 2nd ed., 1997. Google Scholar

[48]

M. I. Vishik and V. V. Chepyzhov, Attractors of nonautonomous dynamical systems and an estimate for their dimension, Mat. Zametki, 51 (1992), 141-143. Google Scholar

[49]

P. Walters, Introduction to Ergodic Theory, Springer-Verlag, New York, 1982. Google Scholar

[50]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. Google Scholar

[51]

_____, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete and Continuous Dynamical Systems, 34 (2014), 269-300. Google Scholar

[52]

Y. Wang and J. Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, Journal of Differential Equations, 259 (2015), 728-776. Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. Google Scholar

[2]

L. Arnold and I. Chueshov, Order-preserving random dynamical systems: Equilibria, attractors, applications, Dynam. Stability Systems, 13 (1998), 265-280. doi: 10.1080/02681119808806264. Google Scholar

[3]

T. CaraballoI. Chueshov and J. A. Langa, Existence of invariant manifolds for coupled parabolic and hyperbolic stochastic partial differential equations, Nonlinearity, 18 (2005), 747-767. doi: 10.1088/0951-7715/18/2/015. Google Scholar

[4]

D. Cheban and C. Mammana, Relation between different types of global attractors of set-valued nonautonomous dynamical systems, Set-Valued Analysis, 13 (2005), 291-321. doi: 10.1007/s11228-004-0046-x. Google Scholar

[5]

V. Chepyzhov and M. Vishik, A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations, Indiana Univ. Math. J., 42 (1993), 1057-1076. doi: 10.1512/iumj.1993.42.42049. Google Scholar

[6]

V. Chepyzhov and M. Vishik, Attractors of non-autonomous dynamical systems and their dimension, Journal de Mathématiques Pures et Appliquées, 73 (1994), 279-333. Google Scholar

[7]

_____, Attractors of non-autonomous evolution equations with translation compact symbols, in Partial Differential Operators and Mathematical Physics, Springer, 1995, 49-60.Google Scholar

[8]

V. Chepyzhov and M. Vishik, Attractors for nonautonomous Navier-Stokes system and other partial differential equations, in Instability in models connected with fluid flows. Ⅰ, vol. 6 of Int. Math. Ser. (N. Y. ), Springer, New York, 2008,135-265. Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl. (9), 73 (1994), 279-333. Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, vol. 49, American Mathematical Society Providence, RI, USA, 2002. Google Scholar

[11]

_____, Monotone Random Systems Theory and Applications, vol. 1779, Springer Science & Business Media, 2002. Google Scholar

[12]

_____, Invariant manifolds and nonlinear master-slave synchronization in coupled systems, Appl. Anal., 86 (2007), 269-286. doi: 10.1080/00036810601097629. Google Scholar

[13]

_____, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262. doi: 10.1016/j.jde.2011.08.022. Google Scholar

[14]

_____, A squeezing property and its applications to a description of long-time behaviour in the three-dimensional viscous primitive equations, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 711-729. doi: 10.1017/S0308210512001953. Google Scholar

[15]

_____, Dynamics of Quasi-Stable Dissipative Systems, Universitext, Springer, Cham, 2015. Google Scholar

[16]

I. ChueshovM. Eller and I. Lasiecka, Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation, Comm. Partial Differential Equations, 29 (2004), 1847-1876. Google Scholar

[17]

I. Chueshov and I. Lasiecka, Determining functionals for a class of second order in time evolution equations with applications to von Karman equations, in Analysis and optimization of differential systems (Constanta, 2002), Kluwer Acad. Publ., Boston, MA, 2003,109-122. Google Scholar

[18]

_____, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc. , 195 (2008), ⅷ+183pp.Google Scholar

[19]

_____, On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, Comm. Partial Differential Equations, 36 (2011), 67-99. Google Scholar

[20]

I. Chueshov and A. Rezounenko, Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay, Commun. Pure Appl. Anal., 14 (2015), 1685-1704. Google Scholar

[21]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004), 127-144. Google Scholar

[22]

I. D. Chueshov, Approximate inertial manifolds of exponential order for semilinear parabolic equations subjected to additive white noise, J. Dynam. Differential Equations, 7 (1995), 549-566. Google Scholar

[23]

_____, The theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems, Uspekhi Mat. Nauk, 53 (1998), 77-124. Google Scholar

[24]

_____, Vvedenie v Teoriyu Beskonechnomernykh Dissipativnykh Sistem, Universitetskie Lektsii po Sovremennoi Matematike. [University Lectures in Contemporary Mathematics], AKTA, Kharkiv, 1999.Google Scholar

[25]

M. Coti Zelati and P. Kalita, Minimality properties of set-valued processes and their pullback attractors, SIAM Journal on Mathematical Analysis, 47 (2015), 1530-1561. Google Scholar

[26]

H. CrauelA. Debussche and F. Flandoli, Random attractors, Journal of Dynamics and Differential Equations, 9 (1997), 307-341. Google Scholar

[27]

H. CrauelP. E. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stochastics & Dynamics, 11 (2011), 301-314. Google Scholar

[28]

H. CuiM. M. Freitas and J. A. Langa, On random cocycle attractors with autonomous attraction universes, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3379-3407. Google Scholar

[29]

H. Cui and J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, Journal of Differential Equations, 263 (2017), 1225-1268. Google Scholar

[30]

H. CuiJ. A. Langa and Y. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Analysis: Theory, Methods & Applications, 140 (2016), 208-235. Google Scholar

[31]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Analysis: Theory, Methods & Applications, 128 (2015), 303-324. Google Scholar

[32]

A. Debussche, On the finite dimensionality of random attractors, Stoch. Anal. Appl., 15 (1997), 473-491. Google Scholar

[33]

A. Eden, C. Foias, B. Nicolaenko and R. Teman, Exponential Attractors for Dissipative Evolution Equations, UK: RAM, Wiley, Chichester, 1994. Google Scholar

[34]

X. Fan, Attractors for a damped stochastic wave equation of the sine-Gordon type with sublinear multiplicative noise, Stochastic Analysis and Applications, 24 (2006), 767-793. Google Scholar

[35]

F. Flandoli and J. A. Langa, Determining modes for dissipative random dynamical systems, Stochastics: An International Journal of Probability and Stochastic Processes, 66 (1999), 1-25. Google Scholar

[36]

C. Foias and R. Teman, Some analytic and geometric properties of the solutions of the navier-stokes equations, J. Math. Pure Appl., 58 (1979), 339-368. Google Scholar

[37]

T. V. Girya and I. D. Chueshov, Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems, Mat. Sb., 186 (1995), 29-46. Google Scholar

[38]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 463, The Royal Society, 2007,163-181. Google Scholar

[39]

P. E. KloedenC. Pötzsche and M. Rasmussen, Limitations of pullback attractors for processes, Journal of Difference Equations and Applications, 18 (2012), 693-701. Google Scholar

[40]

J. A. LangaG.Ł ukaszewicz and J. Real, Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains, Nonlinear Anal., 66 (2007), 735-749. Google Scholar

[41]

J. A. LangaJ. C. RobinsonA. Rodriguez-BernalA. Suárez and A. Vidal-López, Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations, Discrete and Continuous Dynamical Systems. Series A, 18 (2007), 483-497. Google Scholar

[42]

Q. MaS. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541-1559. Google Scholar

[43]

G. Ochs, Weak Random Attractors, Citeseer, 1999.Google Scholar

[44]

J. C. Robinson, Infinite-dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, vol. 28, Cambridge University Press, 2001. Google Scholar

[45]

_____, Dimensions, Embeddings, and Attractors, Cambridge University Press Cambridge, 2010. Google Scholar

[46]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis North-Holland Pub. Co., Amsterdam, 1979. Google Scholar

[47]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 2nd ed., 1997. Google Scholar

[48]

M. I. Vishik and V. V. Chepyzhov, Attractors of nonautonomous dynamical systems and an estimate for their dimension, Mat. Zametki, 51 (1992), 141-143. Google Scholar

[49]

P. Walters, Introduction to Ergodic Theory, Springer-Verlag, New York, 1982. Google Scholar

[50]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. Google Scholar

[51]

_____, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete and Continuous Dynamical Systems, 34 (2014), 269-300. Google Scholar

[52]

Y. Wang and J. Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, Journal of Differential Equations, 259 (2015), 728-776. Google Scholar

[1]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[2]

Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106

[3]

Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873

[4]

Hakima Bessaih, Benedetta Ferrario. Statistical properties of stochastic 2D Navier-Stokes equations from linear models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2927-2947. doi: 10.3934/dcdsb.2016080

[5]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[6]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[7]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[8]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[9]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181

[10]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[11]

Vladimir V. Chepyzhov. Trajectory attractors for non-autonomous dissipative 2d Euler equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 811-832. doi: 10.3934/dcdsb.2015.20.811

[12]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[13]

Bixiang Wang. Multivalued non-autonomous random dynamical systems for wave equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2011-2051. doi: 10.3934/dcdsb.2017119

[14]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603

[15]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[16]

Songsong Lu, Hongqing Wu, Chengkui Zhong. Attractors for nonautonomous 2d Navier-Stokes equations with normal external forces. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 701-719. doi: 10.3934/dcds.2005.13.701

[17]

Ruihong Ji, Yongfu Wang. Mass concentration phenomenon to the 2D Cauchy problem of the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1117-1133. doi: 10.3934/dcds.2019047

[18]

Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-26. doi: 10.3934/dcdsb.2019172

[19]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure & Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[20]

Hong Lu, Jiangang Qi, Bixiang Wang, Mingji Zhang. Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 683-706. doi: 10.3934/dcds.2019028

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (69)
  • HTML views (230)
  • Cited by (0)

[Back to Top]