# American Institute of Mathematical Sciences

August  2018, 23(6): 2265-2297. doi: 10.3934/dcdsb.2018096

## Quantized vortex dynamics and interaction patterns in superconductivity based on the reduced dynamical law

 1 School of Mathematics, Jilin University, Changchun 130012, China 2 Department of Mathematics, National University of Singapore, 119076, Singapore

Received  December 2016 Revised  October 2017 Published  March 2018

We study analytically and numerically stability and interaction patterns of quantized vortex lattices governed by the reduced dynamical lawa system of ordinary differential equations (ODEs) - in superconductivity. By deriving several non-autonomous first integrals of the ODEs, we obtain qualitatively dynamical properties of a cluster of quantized vortices, including global existence, finite time collision, equilibrium solution and invariant solution manifolds. For a vortex lattice with 3 vortices, we establish orbital stability when they have the same winding number and find different collision patterns when they have different winding numbers. In addition, under several special initial setups, we can obtain analytical solutions for the nonlinear ODEs.

Citation: Zhiguo Xu, Weizhu Bao, Shaoyun Shi. Quantized vortex dynamics and interaction patterns in superconductivity based on the reduced dynamical law. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2265-2297. doi: 10.3934/dcdsb.2018096
##### References:

show all references

##### References:
Illustrations of a finite time collision of a vortex dipole in a vortex cluster with 3 vortices (a) and a (finite time) collision cluster with 3 vortices in a vortex cluster with 5 vortices (b). Here and in the following figures, '+' and '$-$' denote the initial vortex centers with winding numbers $m = +1$ and $m = -1$, respectively; and 'o' denotes the finite time collision position
Interaction of $3$ vortices with the same winding number (a and b) and opposite winding numbers (c)
Time evolution of $\rho_1(t)$ (left) and $\rho_2(t)$ (right) of (4.12) with $\rho_1^0 = 1$ and $\rho_2^0 = 4$ for different $n\ge2$
Time evolution of $\rho_1(t)$ (left) and $\rho_2(t)$ (right) of (4.20) with $\rho_1^0 = 1$ and $\rho_2^0 = 4$ for different $n\ge2$
Time evolution of $\rho_1(t)$ (left) and $\rho_2(t)$ (right) of (4.26) with $\rho_1^0 = 1$ and $\rho_2^0 = 4$ for different $n\ge2$
Time evolution of $\rho_1(t)$ (left) and $\rho_2(t)$ (right) of (4.32) with $\rho_1^0 = 1$ and $\rho_2^0 = 4$ for different $n\ge2$
 [1] Pedro J. Torres. Non-collision periodic solutions of forced dynamical systems with weak singularities. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 693-698. doi: 10.3934/dcds.2004.11.693 [2] Alexandre N. Carvalho, José A. Langa, James C. Robinson. Non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 703-747. doi: 10.3934/dcdsb.2015.20.703 [3] Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 [4] Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211 [5] Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120 [6] Michael Dellnitz, Christian Horenkamp. The efficient approximation of coherent pairs in non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3029-3042. doi: 10.3934/dcds.2012.32.3029 [7] Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809 [8] Mahesh G. Nerurkar. Spectral and stability questions concerning evolution of non-autonomous linear systems. Conference Publications, 2001, 2001 (Special) : 270-275. doi: 10.3934/proc.2001.2001.270 [9] Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517 [10] Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic & Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441 [11] Sergey V. Bolotin. Shadowing chains of collision orbits. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 235-260. doi: 10.3934/dcds.2006.14.235 [12] Alexander Alekseenko, Truong Nguyen, Aihua Wood. A deterministic-stochastic method for computing the Boltzmann collision integral in $\mathcal{O}(MN)$ operations. Kinetic & Related Models, 2018, 11 (5) : 1211-1234. doi: 10.3934/krm.2018047 [13] David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499 [14] Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569 [15] Noriaki Yamazaki. Global attractors for non-autonomous multivalued dynamical systems associated with double obstacle problems. Conference Publications, 2003, 2003 (Special) : 935-944. doi: 10.3934/proc.2003.2003.935 [16] Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281 [17] Bixiang Wang. Multivalued non-autonomous random dynamical systems for wave equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2011-2051. doi: 10.3934/dcdsb.2017119 [18] Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635 [19] Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523 [20] Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

2018 Impact Factor: 1.008

## Metrics

• HTML views (290)
• Cited by (0)

• on AIMS