# American Institute of Mathematical Sciences

• Previous Article
Stability and robustness analysis for a multispecies chemostat model with delays in the growth rates and uncertainties
• DCDS-B Home
• This Issue
• Next Article
Singular perturbed renormalization group theory and its application to highly oscillatory problems
June  2018, 23(4): 1835-1850. doi: 10.3934/dcdsb.2018094

## Determination of the area of exponential attraction in one-dimensional finite-time systems using meshless collocation

 Department of Mathematics, University of Sussex, Falmer BN1 9QH, United Kingdom

* Corresponding author

Received  December 2016 Revised  November 2017 Published  March 2018

We consider a non-autonomous ordinary differential equation over a finite time interval $[T_1,T_2]$. The area of exponential attraction consists of solutions such that the distance to adjacent solutions exponentially contracts from $T_1$ to $T_2$. One can use a contraction metric to determine an area of exponential attraction and to provide a bound on the rate of attraction.

In this paper, we will give the first method to algorithmically construct a contraction metric for finite-time systems in one spatial dimension. We will show the existence of a contraction metric, given by a function which satisfies a second-order partial differential equation with boundary conditions. We then use meshless collocation to approximately solve this equation, and show that the resulting approximation itself defines a contraction metric, if the collocation points are sufficiently dense. We give error estimates and apply the method to an example.

Citation: Peter Giesl, James McMichen. Determination of the area of exponential attraction in one-dimensional finite-time systems using meshless collocation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1835-1850. doi: 10.3934/dcdsb.2018094
##### References:

show all references

##### References:
The collocation points $X_1$ and $X_2$ as well as some numerically computed solutions of the system (21) with $T_2 = 2$.
The function $L_m(t,x)$, using the approximation $w$ with $T_2 = 2$.
Some level sets of $L_m(t,x)$. The 0-level set of $L_m$ crosses the $x$-axis at $\pm0.1789$ and is an approximation of the area of exponential attraction.
Zero level sets of $L_m(t,x)$ for different values of $T_2$, namely $0.4$ (black), $0.8$ (blue), $1.2$ (red), $1.6$ (green), $2$ (magenta) and $2.4$ (cyan). The 0-level set of $L_m$ is an approximation of the area of exponential attraction. The size of the area of exponential attraction in $x$-direction shrinks until $T_2 = 1.5$ and then grows again.
 [1] Peter Giesl, Holger Wendland. Construction of a contraction metric by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3843-3863. doi: 10.3934/dcdsb.2018333 [2] Peter Giesl, Holger Wendland. Approximating the basin of attraction of time-periodic ODEs by meshless collocation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1249-1274. doi: 10.3934/dcds.2009.25.1249 [3] Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387 [4] Peter Giesl, Holger Wendland. Approximating the basin of attraction of time-periodic ODEs by meshless collocation of a Cauchy problem. Conference Publications, 2009, 2009 (Special) : 259-268. doi: 10.3934/proc.2009.2009.259 [5] Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010 [6] Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218 [7] Dirk Aeyels, Filip De Smet, Bavo Langerock. Area contraction in the presence of first integrals and almost global convergence. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 135-157. doi: 10.3934/dcds.2007.18.135 [8] Daoyi Xu, Weisong Zhou. Existence-uniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2161-2180. doi: 10.3934/dcds.2017093 [9] Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056 [10] Jin Zhang, Peter E. Kloeden, Meihua Yang, Chengkui Zhong. Global exponential κ-dissipative semigroups and exponential attraction. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3487-3502. doi: 10.3934/dcds.2017148 [11] Giuseppe Savaré. Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1641-1661. doi: 10.3934/dcds.2014.34.1641 [12] Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75 [13] Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019006 [14] Huan-Zhen Chen, Zhao-Jie Zhou, Hong Wang, Hong-Ying Man. An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 325-341. doi: 10.3934/dcdsb.2011.15.325 [15] Xingwen Hao, Yachun Li, Qin Wang. A kinetic approach to error estimate for nonautonomous anisotropic degenerate parabolic-hyperbolic equations. Kinetic & Related Models, 2014, 7 (3) : 477-492. doi: 10.3934/krm.2014.7.477 [16] Patrick Henning, Mario Ohlberger. A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1393-1420. doi: 10.3934/dcdss.2016056 [17] P.E. Kloeden, Pedro Marín-Rubio. Equi-Attraction and the continuous dependence of attractors on time delays. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 581-593. doi: 10.3934/dcdsb.2008.9.581 [18] Arno Berger. On finite-time hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963 [19] Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641 [20] Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

2018 Impact Factor: 1.008