September  2018, 23(7): 2709-2725. doi: 10.3934/dcdsb.2018088

Two-step collocation methods for fractional differential equations

Dipartimento di Matematica, Università di Salerno, Fisciano (SA), Italy

* Corresponding author

Received  October 2016 Revised  October 2017 Published  March 2018

Fund Project: The work is supported by GNCS-Indam project

We propose two-step collocation methods for the numerical solution of fractional differential equations. These methods increase the order of convergence of one-step collocation methods, with the same number of collocation points. Moreover, they are continuous methods, i.e. they furnish an approximation of the solution at each point of the time interval. We describe the derivation of two-step collocation methods and analyse convergence. Some numerical experiments confirm theoretical expectations.

Citation: Angelamaria Cardone, Dajana Conte, Beatrice Paternoster. Two-step collocation methods for fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2709-2725. doi: 10.3934/dcdsb.2018088
References:
[1]

L. Blank, Numerical treatment of differential equations of fractional order, Nonlinear World, 4 (1997), 473-491. Google Scholar

[2]

J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293. doi: 10.1016/0370-1573(90)90099-N. Google Scholar

[3]

M. Braś and A. Cardone, Construction of efficient general linear methods for non-stiff differential systems, Math. Model. Anal., 17 (2012), 171-189. doi: 10.3846/13926292.2012.655789. Google Scholar

[4]

M. BraśA. Cardone and R. D'Ambrosio, Implementation of explicit Nordsieck methods with inherent quadratic stability, Math. Model. Anal., 18 (2013), 289-307. doi: 10.3846/13926292.2013.785039. Google Scholar

[5]

H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equations, vol. 3 of CWI Monographs, North-Holland Publishing Co., Amsterdam, 1986. Google Scholar

[6]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, vol. 15 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511543234. Google Scholar

[7]

H. BrunnerA. Pedas and G. Vainikko, Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels, SIAM J. Numer. Anal., 39 (2001), 957-982 (electronic). doi: 10.1137/S0036142900376560. Google Scholar

[8]

A. Cardone and D. Conte, Multistep collocation methods for Volterra integro-differential equations, Appl. Math. Comput., 221 (2013), 770-785. doi: 10.1016/j.amc.2013.07.012. Google Scholar

[9]

A. CardoneL. G. Ixaru and B. Paternoster, Exponential fitting direct quadrature methods for Volterra integral equations, Numer. Algorithms, 55 (2010), 467-480. doi: 10.1007/s11075-010-9365-1. Google Scholar

[10]

A. CardoneE. Messina and A. Vecchio, An adaptive method for Volterra-Fredholm integral equations on the half line, J. Comput. Appl. Math., 228 (2009), 538-547. doi: 10.1016/j.cam.2008.03.036. Google Scholar

[11]

D. ConteR. D'Ambrosio and B. Paternoster, Two-step diagonally-implicit collocation based methods for Volterra integral equations, Appl. Numer. Math., 62 (2012), 1312-1324. doi: 10.1016/j.apnum.2012.06.007. Google Scholar

[12]

V. Daftardar-Gejji and H. Jafari, Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301 (2005), 508-518. doi: 10.1016/j.jmaa.2004.07.039. Google Scholar

[13]

R. D'Ambrosio and B. Paternoster, Two-step modified collocation methods with structured coefficient matrices, Appl. Numer. Math., 62 (2012), 1325-1334. doi: 10.1016/j.apnum.2012.06.008. Google Scholar

[14]

M. Di PaolaA. Pirrotta and A. Valenza, Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results, Mech. Mater., 43 (2011), 799-806. doi: 10.1016/j.mechmat.2011.08.016. Google Scholar

[15]

K. Diethelm, Smoothness properties of solutions of Caputo-type fractional differential equations, Fract. Calc. Appl. Anal., 10 (2007), 151-160. Google Scholar

[16]

K. Diethelm, The analysis of Fractional Differential Equations, vol. 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010, An application-oriented exposition using differential operators of Caputo type. doi: 10.1007/978-3-642-14574-2. Google Scholar

[17]

K. DiethelmN. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22, Fractional order calculus and its applications. doi: 10.1023/A:1016592219341. Google Scholar

[18]

K. DiethelmN. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31-52. doi: 10.1023/B:NUMA.0000027736.85078.be. Google Scholar

[19]

V. DjordjevićJ. JarićB. FabryJ. Fredberg and D. Stamenović, Fractional derivatives embody essential features of cell rheological behavior, Ann. Biomed. Eng., 31 (2003), 692-699. doi: 10.1114/1.1574026. Google Scholar

[20]

R. Garrappa, On linear stability of predictor-corrector algorithms for fractional differential equations, Int. J. Comput. Math., 87 (2010), 2281-2290. doi: 10.1080/00207160802624331. Google Scholar

[21]

R. Garrappa and M. Popolizio, On accurate product integration rules for linear fractional differential equations, J. Comput. Appl. Math., 235 (2011), 1085-1097. doi: 10.1016/j.cam.2010.07.008. Google Scholar

[22]

E. HairerC. Lubich and M. Schlichte, Fast numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math., 23 (1988), 87-98. doi: 10.1016/0377-0427(88)90332-9. Google Scholar

[23]

E. Hairer, S. P. N∅rsett and G. Wanner, Solving Ordinary Differential Equations. I, vol. 8 of Springer Series in Computational Mathematics, 2nd edition, Springer-Verlag, Berlin, 1993, Nonstiff problems. Google Scholar

[24]

E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II, vol. 14 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2010, Stiff and differential-algebraic problems, Second revised edition, paperback. doi: 10.1007/978-3-642-05221-7. Google Scholar

[25]

C. Huang and Z. Zhang, Convergence of a $p$ -version/$hp$ -version method for fractional differential equations, J. Comput. Phys., 286 (2015), 118-127. doi: 10.1016/j.jcp.2015.01.025. Google Scholar

[26]

L. G. Ixaru and G. Vanden Berghe, Exponential Fitting, vol. 568 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2004, With 1 CD-ROM (Windows, Macintosh and UNIX). doi: 10.1007/978-1-4020-2100-8. Google Scholar

[27]

R. Klages, G. Radons and I. Sokolov, Anomalous Transport: Foundations and Applications, John Wiley & Sons, 2008. doi: 10.1002/9783527622979. Google Scholar

[28]

I. Lie, Local error estimation for multistep collocation methods, BIT, 30 (1990), 126-144. doi: 10.1007/BF01932138. Google Scholar

[29]

I. Lie and S. P. Norsett, Superconvergence for multistep collocation, Math. Comp., 52 (1989), 65-79. doi: 10.1090/S0025-5718-1989-0971403-5. Google Scholar

[30]

C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comp., 45 (1985), 463-469. doi: 10.1090/S0025-5718-1985-0804935-7. Google Scholar

[31]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010, An introduction to mathematical models. doi: 10.1142/9781848163300. Google Scholar

[32]

B. Mandelbrot and J. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437. doi: 10.1137/1010093. Google Scholar

[33]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach Phys. Rep. , 339 (2000), 77pp. doi: 10.1016/S0370-1573(00)00070-3. Google Scholar

[34]

C. Necula, Option pricing in a fractional brownian motion environment, SSRN, (2008), 19pp. doi: 10.2139/ssrn.1286833. Google Scholar

[35]

A. Pedas and E. Tamme, On the convergence of spline collocation methods for solving fractional differential equations, J. Comput. Appl. Math., 235 (2011), 3502-3514. doi: 10.1016/j.cam.2010.10.054. Google Scholar

[36]

A. Pedas and E. Tamme, Numerical solution of nonlinear fractional differential equations by spline collocation methods, J. Comput. Appl. Math., 255 (2014), 216-230. doi: 10.1016/j.cam.2013.04.049. Google Scholar

[37]

E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput., 176 (2006), 1-6. doi: 10.1016/j.amc.2005.09.059. Google Scholar

[38]

P. Torvik and R. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294-298. doi: 10.1115/1.3167615. Google Scholar

[39]

G. Vainikko, Multidimensional Weakly Singular Integral Equations, vol. 1549 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1993. Google Scholar

show all references

References:
[1]

L. Blank, Numerical treatment of differential equations of fractional order, Nonlinear World, 4 (1997), 473-491. Google Scholar

[2]

J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293. doi: 10.1016/0370-1573(90)90099-N. Google Scholar

[3]

M. Braś and A. Cardone, Construction of efficient general linear methods for non-stiff differential systems, Math. Model. Anal., 17 (2012), 171-189. doi: 10.3846/13926292.2012.655789. Google Scholar

[4]

M. BraśA. Cardone and R. D'Ambrosio, Implementation of explicit Nordsieck methods with inherent quadratic stability, Math. Model. Anal., 18 (2013), 289-307. doi: 10.3846/13926292.2013.785039. Google Scholar

[5]

H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equations, vol. 3 of CWI Monographs, North-Holland Publishing Co., Amsterdam, 1986. Google Scholar

[6]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, vol. 15 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511543234. Google Scholar

[7]

H. BrunnerA. Pedas and G. Vainikko, Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels, SIAM J. Numer. Anal., 39 (2001), 957-982 (electronic). doi: 10.1137/S0036142900376560. Google Scholar

[8]

A. Cardone and D. Conte, Multistep collocation methods for Volterra integro-differential equations, Appl. Math. Comput., 221 (2013), 770-785. doi: 10.1016/j.amc.2013.07.012. Google Scholar

[9]

A. CardoneL. G. Ixaru and B. Paternoster, Exponential fitting direct quadrature methods for Volterra integral equations, Numer. Algorithms, 55 (2010), 467-480. doi: 10.1007/s11075-010-9365-1. Google Scholar

[10]

A. CardoneE. Messina and A. Vecchio, An adaptive method for Volterra-Fredholm integral equations on the half line, J. Comput. Appl. Math., 228 (2009), 538-547. doi: 10.1016/j.cam.2008.03.036. Google Scholar

[11]

D. ConteR. D'Ambrosio and B. Paternoster, Two-step diagonally-implicit collocation based methods for Volterra integral equations, Appl. Numer. Math., 62 (2012), 1312-1324. doi: 10.1016/j.apnum.2012.06.007. Google Scholar

[12]

V. Daftardar-Gejji and H. Jafari, Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301 (2005), 508-518. doi: 10.1016/j.jmaa.2004.07.039. Google Scholar

[13]

R. D'Ambrosio and B. Paternoster, Two-step modified collocation methods with structured coefficient matrices, Appl. Numer. Math., 62 (2012), 1325-1334. doi: 10.1016/j.apnum.2012.06.008. Google Scholar

[14]

M. Di PaolaA. Pirrotta and A. Valenza, Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results, Mech. Mater., 43 (2011), 799-806. doi: 10.1016/j.mechmat.2011.08.016. Google Scholar

[15]

K. Diethelm, Smoothness properties of solutions of Caputo-type fractional differential equations, Fract. Calc. Appl. Anal., 10 (2007), 151-160. Google Scholar

[16]

K. Diethelm, The analysis of Fractional Differential Equations, vol. 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010, An application-oriented exposition using differential operators of Caputo type. doi: 10.1007/978-3-642-14574-2. Google Scholar

[17]

K. DiethelmN. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22, Fractional order calculus and its applications. doi: 10.1023/A:1016592219341. Google Scholar

[18]

K. DiethelmN. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31-52. doi: 10.1023/B:NUMA.0000027736.85078.be. Google Scholar

[19]

V. DjordjevićJ. JarićB. FabryJ. Fredberg and D. Stamenović, Fractional derivatives embody essential features of cell rheological behavior, Ann. Biomed. Eng., 31 (2003), 692-699. doi: 10.1114/1.1574026. Google Scholar

[20]

R. Garrappa, On linear stability of predictor-corrector algorithms for fractional differential equations, Int. J. Comput. Math., 87 (2010), 2281-2290. doi: 10.1080/00207160802624331. Google Scholar

[21]

R. Garrappa and M. Popolizio, On accurate product integration rules for linear fractional differential equations, J. Comput. Appl. Math., 235 (2011), 1085-1097. doi: 10.1016/j.cam.2010.07.008. Google Scholar

[22]

E. HairerC. Lubich and M. Schlichte, Fast numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math., 23 (1988), 87-98. doi: 10.1016/0377-0427(88)90332-9. Google Scholar

[23]

E. Hairer, S. P. N∅rsett and G. Wanner, Solving Ordinary Differential Equations. I, vol. 8 of Springer Series in Computational Mathematics, 2nd edition, Springer-Verlag, Berlin, 1993, Nonstiff problems. Google Scholar

[24]

E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II, vol. 14 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2010, Stiff and differential-algebraic problems, Second revised edition, paperback. doi: 10.1007/978-3-642-05221-7. Google Scholar

[25]

C. Huang and Z. Zhang, Convergence of a $p$ -version/$hp$ -version method for fractional differential equations, J. Comput. Phys., 286 (2015), 118-127. doi: 10.1016/j.jcp.2015.01.025. Google Scholar

[26]

L. G. Ixaru and G. Vanden Berghe, Exponential Fitting, vol. 568 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2004, With 1 CD-ROM (Windows, Macintosh and UNIX). doi: 10.1007/978-1-4020-2100-8. Google Scholar

[27]

R. Klages, G. Radons and I. Sokolov, Anomalous Transport: Foundations and Applications, John Wiley & Sons, 2008. doi: 10.1002/9783527622979. Google Scholar

[28]

I. Lie, Local error estimation for multistep collocation methods, BIT, 30 (1990), 126-144. doi: 10.1007/BF01932138. Google Scholar

[29]

I. Lie and S. P. Norsett, Superconvergence for multistep collocation, Math. Comp., 52 (1989), 65-79. doi: 10.1090/S0025-5718-1989-0971403-5. Google Scholar

[30]

C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comp., 45 (1985), 463-469. doi: 10.1090/S0025-5718-1985-0804935-7. Google Scholar

[31]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010, An introduction to mathematical models. doi: 10.1142/9781848163300. Google Scholar

[32]

B. Mandelbrot and J. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437. doi: 10.1137/1010093. Google Scholar

[33]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach Phys. Rep. , 339 (2000), 77pp. doi: 10.1016/S0370-1573(00)00070-3. Google Scholar

[34]

C. Necula, Option pricing in a fractional brownian motion environment, SSRN, (2008), 19pp. doi: 10.2139/ssrn.1286833. Google Scholar

[35]

A. Pedas and E. Tamme, On the convergence of spline collocation methods for solving fractional differential equations, J. Comput. Appl. Math., 235 (2011), 3502-3514. doi: 10.1016/j.cam.2010.10.054. Google Scholar

[36]

A. Pedas and E. Tamme, Numerical solution of nonlinear fractional differential equations by spline collocation methods, J. Comput. Appl. Math., 255 (2014), 216-230. doi: 10.1016/j.cam.2013.04.049. Google Scholar

[37]

E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput., 176 (2006), 1-6. doi: 10.1016/j.amc.2005.09.059. Google Scholar

[38]

P. Torvik and R. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294-298. doi: 10.1115/1.3167615. Google Scholar

[39]

G. Vainikko, Multidimensional Weakly Singular Integral Equations, vol. 1549 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1993. Google Scholar

Figure 1.  One-step collocation method with $m = 2$ and two-step collocation methods with $m = 2$ and with $m = 4$
Figure 2.  One-step collocation method with $m = 3$ and two-step collocation methods with $m = 3$ and with $m = 6$
Table 1.  Two-step collocation method with $m = 2$, $\eta = \left[\frac{1}{3}, \frac{2}{3}\right]$
Problem 1Problem 2Problem 3
N $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$
8 $0.02$ $4.49e-03$ $0.31$
16 $1.20e-03$ $3.78$ $3.08e-04$ $3.87$ $0.10$ $1.62$
32 $8.02e-05$ $3.90$ $1.93e-05$ $3.99$ $0.01$ $2.78$
64 $5.19e-06$ $3.95$ $1.20e-06$ $4.01$$1.26e-03$ $3.52$
128 $3.33e-07$ $3.96$ $7.42e-08$ $4.01$$8.32e-05$ $3.92$
256 $2.12e-08$ $3.97$ $4.62e-09$ $4.01$$4.82e-06$ $4.11$
512 $1.35e-09$$3.98$ $2.88e-10$ $4.00$$2.68e-07$ $4.17$
Problem 1Problem 2Problem 3
N $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$
8 $0.02$ $4.49e-03$ $0.31$
16 $1.20e-03$ $3.78$ $3.08e-04$ $3.87$ $0.10$ $1.62$
32 $8.02e-05$ $3.90$ $1.93e-05$ $3.99$ $0.01$ $2.78$
64 $5.19e-06$ $3.95$ $1.20e-06$ $4.01$$1.26e-03$ $3.52$
128 $3.33e-07$ $3.96$ $7.42e-08$ $4.01$$8.32e-05$ $3.92$
256 $2.12e-08$ $3.97$ $4.62e-09$ $4.01$$4.82e-06$ $4.11$
512 $1.35e-09$$3.98$ $2.88e-10$ $4.00$$2.68e-07$ $4.17$
Table 2.  Two-step collocation method with $m = 3$, $\eta = \left[\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right]$
Problem 1 Problem 2 Problem 3
N $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$
8 $0.13$ $1.60e-02$ $0.11$
16 $1.44e-03$ $6.54$ $1.73e-04$ $6.53$ $1.93e-02$ $ 2.56$
32 $1.78e-05$ $6.34$ $ 2.12e-06$ $6.34$ $1.06e-03$ $ 4.18$
64 $2.40e-07$ $6.21$ $2.91e-08$ $6.19$$2.78e-05$ $5.26$
128 $3.43e-09$ $6.13$ $4.25e-10$ $6.10$$5.00e-07$ $5.80$
256 $5.09e-11$ $6.08$ $6.43e-12$ $6.05$$ 7.53e-09$ $6.05$
512 $7.66e-13$ $6.05$ $9.90e-14$ $ 6.02$$1.05e-10$ $6.17$
Problem 1 Problem 2 Problem 3
N $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$
8 $0.13$ $1.60e-02$ $0.11$
16 $1.44e-03$ $6.54$ $1.73e-04$ $6.53$ $1.93e-02$ $ 2.56$
32 $1.78e-05$ $6.34$ $ 2.12e-06$ $6.34$ $1.06e-03$ $ 4.18$
64 $2.40e-07$ $6.21$ $2.91e-08$ $6.19$$2.78e-05$ $5.26$
128 $3.43e-09$ $6.13$ $4.25e-10$ $6.10$$5.00e-07$ $5.80$
256 $5.09e-11$ $6.08$ $6.43e-12$ $6.05$$ 7.53e-09$ $6.05$
512 $7.66e-13$ $6.05$ $9.90e-14$ $ 6.02$$1.05e-10$ $6.17$
[1]

Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667

[2]

Hui Liang, Hermann Brunner. Collocation methods for differential equations with piecewise linear delays. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1839-1857. doi: 10.3934/cpaa.2012.11.1839

[3]

Zhong-Qing Wang, Li-Lian Wang. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 685-708. doi: 10.3934/dcdsb.2010.13.685

[4]

Philippe Angot, Pierre Fabrie. Convergence results for the vector penalty-projection and two-step artificial compressibility methods. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1383-1405. doi: 10.3934/dcdsb.2012.17.1383

[5]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[6]

Jie Tang, Ziqing Xie, Zhimin Zhang. The long time behavior of a spectral collocation method for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 797-819. doi: 10.3934/dcdsb.2013.18.797

[7]

Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029

[8]

Zhongying Chen, Bin Wu, Yuesheng Xu. Fast numerical collocation solutions of integral equations. Communications on Pure & Applied Analysis, 2007, 6 (3) : 643-666. doi: 10.3934/cpaa.2007.6.643

[9]

Lianshuan Shi, Enmin Feng, Huanchun Sun, Zhaosheng Feng. A two-step algorithm for layout optimization of structures with discrete variables. Journal of Industrial & Management Optimization, 2007, 3 (3) : 543-552. doi: 10.3934/jimo.2007.3.543

[10]

Tingting Wu, Yufei Yang, Huichao Jing. Two-step methods for image zooming using duality strategies. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 209-225. doi: 10.3934/naco.2014.4.209

[11]

Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010

[12]

Raffaele D'Ambrosio, Martina Moccaldi, Beatrice Paternoster. Numerical preservation of long-term dynamics by stochastic two-step methods. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2763-2773. doi: 10.3934/dcdsb.2018105

[13]

Francisco J. Ibarrola, Ruben D. Spies. A two-step mixed inpainting method with curvature-based anisotropy and spatial adaptivity. Inverse Problems & Imaging, 2017, 11 (2) : 247-262. doi: 10.3934/ipi.2017012

[14]

Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 695-717. doi: 10.3934/dcdsb.2018203

[15]

Ferdinando Auricchio, Lourenco Beirão da Veiga, Josef Kiendl, Carlo Lovadina, Alessandro Reali. Isogeometric collocation mixed methods for rods. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 33-42. doi: 10.3934/dcdss.2016.9.33

[16]

Peter Giesl, Holger Wendland. Construction of a contraction metric by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3843-3863. doi: 10.3934/dcdsb.2018333

[17]

Xiaoxue Gong, Ying Xu, Vinay Mahadeo, Tulin Kaman, Johan Larsson, James Glimm. Mesh convergence for turbulent combustion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4383-4402. doi: 10.3934/dcds.2016.36.4383

[18]

Junhao Hu, Chenggui Yuan. Strong convergence of neutral stochastic functional differential equations with two time-scales. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5831-5848. doi: 10.3934/dcdsb.2019108

[19]

Peter Giesl, Holger Wendland. Approximating the basin of attraction of time-periodic ODEs by meshless collocation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1249-1274. doi: 10.3934/dcds.2009.25.1249

[20]

Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (76)
  • HTML views (372)
  • Cited by (0)

[Back to Top]