January  2018, 23(1): 295-329. doi: 10.3934/dcdsb.2018021

The Krasnosel'skii formula for parabolic differential inclusions with state constraints

1. 

Institute of Mathematics, Technical University of Łódź, Poland

2. 

Faculty of Mathematics and Computer Sciences, Nicolaus Copernicus University, Poland

* The first author was partially supported by the Polish National Science Center under grant 2013/09/B/ST1/01963

Received  December 2016 Published  January 2018

We consider a constrained semilinear evolution inclusion of parabolic type involving an $m$-dissipative linear operator and a source term of multivalued type in a Banach space and topological properties of the solution map. We establish the $R_δ$-description of the set of solutions surviving in the constraining area and show a relation between the fixed point index of the Krasnosel'skii-Poincaré operator of translation along trajectories associated with the problem and the appropriately defined constrained degree of the right-hand side in the equation. This provides topological tools appropriate to obtain results on the existence of periodic solutions to studied differential problems.

Citation: Wojciech Kryszewski, Dorota Gabor, Jakub Siemianowski. The Krasnosel'skii formula for parabolic differential inclusions with state constraints. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 295-329. doi: 10.3934/dcdsb.2018021
References:
[1]

S. AizicoviciN. Papageorgiu and V. Staicu, Periodic solutions of nonlinear evolution inclusions in Banach spaces, J. Nonlinear Convex Anal., 7 (2006), 163-177. Google Scholar

[2]

R. R. Akhmerov, M. I. Kamenskii, A. S. Potapova, A. E. Rodkina and B. N. Sadovskii, Measures of Noncompactness And Condensing Operators, Basel–Berlin–Boston, Birkhäuser Verlag, 1992. doi: 10.1007/978-3-0348-5727-7. Google Scholar

[3]

Ch. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, A Hitchhiker's Guide 3rd edition, Springer-Verlag, Berlin 2006. Google Scholar

[4]

W. Arendt and A. F. M. ter Elst, From forms to semigroups, in Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations, (eds. W. Arendt et al. ), Birkhäuser/Springer Basel AG, Basel, 221 (2012), 47–69. doi: 10.1007/978-3-0348-0297-0_4. Google Scholar

[5]

J. -P. Aubin, A. M. Bayen and P. Sait-Pierre, Viability Theory: New Directions 2nd edition, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16684-6. Google Scholar

[6]

J. -P. Aubin and I. Ekeland, Applied Nonlinear Analysis John Wiley & Sons, Inc., New York, 1984. Google Scholar

[7]

J. -P. Aubin and H. Frankowska, Set-valued Analysis Birkhäuser Boston, Inc., Boston, MA, 2009. doi: 10.1007/978-0-8176-4848-0. Google Scholar

[8]

D. Averna, Lusin type theorems for multifunctions, Scorza Dragoni's property and Carathéodory selections, Boll. Un. Mat. Ital. A(7), 8 (1994), 193-202. Google Scholar

[9]

R. Bader, On the semilinear multi-valued flow under constraints and the periodic problem, Comment. Math. Univ. Carolin., 41 (2000), 719-734. Google Scholar

[10]

R. Bader and W. Kryszewski, On the solution sets of differential inclusions and the periodic problem in Banach spaces, Nonlinear Anal., 54 (2003), 707-754. doi: 10.1016/S0362-546X(03)00098-1. Google Scholar

[11]

Cz. Bessaga and A. Pe lczyński, Selected Topics in Infinite-Dimensional Topology, PWN— Polish Scientific Publishers, Warsaw, 1975. Google Scholar

[12]

D. Bothe, Flow invariance for perturbed nonlinear evolution equations, Abstr. Appl. Anal., 1 (1996), 417-433. doi: 10.1155/S1085337596000231. Google Scholar

[13]

D. Bothe, Periodic solutions of a nonlinear evolution problem from heterogeneous catalysis, Differential Integral Equations, 14 (2001), 641-670. Google Scholar

[14]

D. Bothe, Nonlinear Evolutions in Banach Spaces – Existence and Qualitive Theory with Applications to Reaction-Diffusion Systems, Habilitationsschrift, Techische Universität Darmstadt, 1999, http://www.mma.tu-darmstadt.de/media/mma/bilderdateien_5/publication_mma/habilschrift.pdf.Google Scholar

[15]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations Springer, New York, 2011. Google Scholar

[16]

H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. Google Scholar

[17]

O. Cârjă, M. Necula and I. I. Vrabie, Viability, Invariance and Applications Elsevier Science B. V., Amsterdam, 2007. Google Scholar

[18] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, The Clarendon Press, Oxford University Press, New York, 1998. Google Scholar
[19]

D.-H. ChenR.-N. Wang and Y. Zhou, Nonlinear evolution inclusions: Topological characterizations of solution sets and applications, J. Funct. Anal., 265 (2013), 2039-2073. doi: 10.1016/j.jfa.2013.05.033. Google Scholar

[20]

Y. Chen, Anti-periodic solutions for semilinear evolution equations, J. Math. Anal. Appl., 315 (2006), 337-348. doi: 10.1016/j.jmaa.2005.08.001. Google Scholar

[21]

A. Ćwiszewski, Topological degree methods for perturbations of operators generating compact $C_0$ semigroups, J. Differential Equations, 220 (2006), 434-477. doi: 10.1016/j.jde.2005.04.007. Google Scholar

[22]

A. Ćwiszewski, Positive periodic solutions of parabolic evolutions problems: a translation along trajectories approach, Cent. Eur. J. Math., 9 (2011), 244-268. doi: 10.2478/s11533-011-0010-6. Google Scholar

[23]

A. Ćwiszewski and P. Kokocki, Krasnosel'skii type formula and translation along trajectories method for evolution equations, Discrete Contin. Dyn. Syst., 22 (2008), 605-628. doi: 10.3934/dcds.2008.22.605. Google Scholar

[24]

A. Ćwiszewski and W. Kryszewski, Constrained topological degree and positive solutions of fully nonlinear boundary value problems, J. Differential Equations, 247 (2009), 2235-2269. doi: 10.1016/j.jde.2009.06.025. Google Scholar

[25]

N. Dancer, Degree theory on convex sets and applications to bifurcation, in Calculus of Variations and Partial Differential Equations (Pisa, 1996), (eds. G. Buttazzo. A. Marino and M. K. V. Murthy), Springer, Berlin, (2000), 185-225. doi: 10.1007/978-3-642-57186-2_8. Google Scholar

[26]

J. DiestelW. M. Ruess and W. Schachermayer, On weak compactness in $L^1(μ, X)$, Proc. Amer. Math. Soc., 118 (1993), 447-453. doi: 10.2307/2160321. Google Scholar

[27]

A. Djebali, L. Górniewicz and A. Ouahab, Solution Sets for Differential Equations and Inclusions Walter de Gruyter & Co., Berlin, 2013. doi: 10.1515/9783110293562. Google Scholar

[28]

K. -J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations Springer-Verlag, New York, 2000. Google Scholar

[29]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides Kluwer Academic Publishers Group, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9. Google Scholar

[30]

D. Gabor and W. Kryszewski, A global bifurcation index for set-valued perturbations of Fredholm operator, Nonlinear Anal., 73 (2010), 2714-2736. doi: 10.1016/j.na.2010.06.055. Google Scholar

[31]

L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings Springer, Dordrecht, 2006. Google Scholar

[32]

L. Górniewicz, Topological structure of solution sets: Current results, Arch. Math. (Brno), 36 (2000), 343-382. Google Scholar

[33]

A. Granas and J. Dugundji, Fixed Point Theory Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8. Google Scholar

[34]

N. Hirano and N. Shioji, Invariant sets for nonlinear evolution equations, {C}auchy problems and periodic problems, Abstr. Appl. Anal., 3 (2004), 183-203. doi: 10.1155/S1085337504311073. Google Scholar

[35]

S. T. Hu and N. S. Papageorgiou, Handbook of multivalued analysis. Vol. I Kluwer Academic Publishers, Dordrecht, 1997. doi: 10.1007/978-1-4615-6359-4. Google Scholar

[36]

S. T. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. II Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-1-4615-4665-8_17. Google Scholar

[37]

D. M. Hyman, On decreasing sequences of compact absolute retracts, Fund. Math., 64 (1969), 91-97. doi: 10.4064/fm-64-1-91-97. Google Scholar

[38]

M. JuniewiczH. T. Nguyen and J. Ziemińska, Carathéodory CM-selectors for oppositely semicontinuous multifunctions of two variables, Bull. Pol. Acad. Sci. Math., 50 (2002), 47-57. Google Scholar

[39]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces Walter de Gruyter & Co., Berlin, 2001. doi: 10.1515/9783110870893. Google Scholar

[40]

A. Kanigowski and W. Kryszewski, Perron-Frobenius and Krein-Rutman theorem for tangentially positive operators, Centr. Eur. J. Math., 10 (2012), 2240-2263. doi: 10.2478/s11533-012-0118-3. Google Scholar

[41]

M. A. Krasnosel'skiǐ and P. P. Zabreǐko, Geometrical Methods of Nonlinear Analysis Springer-Verlag, Berlin, 1984. Google Scholar

[42]

W. Kryszewski and J. Siemianowski, The Bolzano mean-value theorem and partial differential equations, J. Math. Anal. Appl., 457 (2018), 1452-1477. doi: 10.1016/j.jmaa.2017.01.040. Google Scholar

[43]

A. Kucia, Scorza Dragoni type theorems, Fund. Math., 138 (1991), 197-203. doi: 10.4064/fm-138-3-197-203. Google Scholar

[44]

R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc., 83 (1977), 495-552. doi: 10.1090/S0002-9904-1977-14321-8. Google Scholar

[45]

V. Obukhovski, P. P. Zecca, N. Van Loi and S. Kornev, Method of Guiding Functions in Problems of Nonlinear Analysis Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-37070-0. Google Scholar

[46]

N. H. Pavel, Invariant sets for a class of semi-linear equations of evolution, Nonlinear Anal., 1 (1977), 187-196. doi: 10.1016/0362-546X(77)90009-8. Google Scholar

[47]

N. H. Pavel, Differential Equations, Flow Invariance and Applications, Research Notes in Mathematics, 113. Boston–London–Melbourne: Pitman Advanced Publishing Program, 1984. Google Scholar

[48]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[49]

J. Prüss, Periodic solutions of semilinear evolution equations., Nonlinear Anal., 3 (1979), 601-612. doi: 10.1016/0362-546X(79)90089-0. Google Scholar

[50]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations American Mathematical Society, Providence, RI, 1997. Google Scholar

[51]

I. I. Vrabie, Compactness Methods for Nonlinear Evolutions Longman Scientific & Technical, Harlow, 1995. Google Scholar

[52]

I. I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc., 109 (1990), 653-661. doi: 10.1090/S0002-9939-1990-1015686-4. Google Scholar

show all references

References:
[1]

S. AizicoviciN. Papageorgiu and V. Staicu, Periodic solutions of nonlinear evolution inclusions in Banach spaces, J. Nonlinear Convex Anal., 7 (2006), 163-177. Google Scholar

[2]

R. R. Akhmerov, M. I. Kamenskii, A. S. Potapova, A. E. Rodkina and B. N. Sadovskii, Measures of Noncompactness And Condensing Operators, Basel–Berlin–Boston, Birkhäuser Verlag, 1992. doi: 10.1007/978-3-0348-5727-7. Google Scholar

[3]

Ch. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, A Hitchhiker's Guide 3rd edition, Springer-Verlag, Berlin 2006. Google Scholar

[4]

W. Arendt and A. F. M. ter Elst, From forms to semigroups, in Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations, (eds. W. Arendt et al. ), Birkhäuser/Springer Basel AG, Basel, 221 (2012), 47–69. doi: 10.1007/978-3-0348-0297-0_4. Google Scholar

[5]

J. -P. Aubin, A. M. Bayen and P. Sait-Pierre, Viability Theory: New Directions 2nd edition, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16684-6. Google Scholar

[6]

J. -P. Aubin and I. Ekeland, Applied Nonlinear Analysis John Wiley & Sons, Inc., New York, 1984. Google Scholar

[7]

J. -P. Aubin and H. Frankowska, Set-valued Analysis Birkhäuser Boston, Inc., Boston, MA, 2009. doi: 10.1007/978-0-8176-4848-0. Google Scholar

[8]

D. Averna, Lusin type theorems for multifunctions, Scorza Dragoni's property and Carathéodory selections, Boll. Un. Mat. Ital. A(7), 8 (1994), 193-202. Google Scholar

[9]

R. Bader, On the semilinear multi-valued flow under constraints and the periodic problem, Comment. Math. Univ. Carolin., 41 (2000), 719-734. Google Scholar

[10]

R. Bader and W. Kryszewski, On the solution sets of differential inclusions and the periodic problem in Banach spaces, Nonlinear Anal., 54 (2003), 707-754. doi: 10.1016/S0362-546X(03)00098-1. Google Scholar

[11]

Cz. Bessaga and A. Pe lczyński, Selected Topics in Infinite-Dimensional Topology, PWN— Polish Scientific Publishers, Warsaw, 1975. Google Scholar

[12]

D. Bothe, Flow invariance for perturbed nonlinear evolution equations, Abstr. Appl. Anal., 1 (1996), 417-433. doi: 10.1155/S1085337596000231. Google Scholar

[13]

D. Bothe, Periodic solutions of a nonlinear evolution problem from heterogeneous catalysis, Differential Integral Equations, 14 (2001), 641-670. Google Scholar

[14]

D. Bothe, Nonlinear Evolutions in Banach Spaces – Existence and Qualitive Theory with Applications to Reaction-Diffusion Systems, Habilitationsschrift, Techische Universität Darmstadt, 1999, http://www.mma.tu-darmstadt.de/media/mma/bilderdateien_5/publication_mma/habilschrift.pdf.Google Scholar

[15]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations Springer, New York, 2011. Google Scholar

[16]

H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. Google Scholar

[17]

O. Cârjă, M. Necula and I. I. Vrabie, Viability, Invariance and Applications Elsevier Science B. V., Amsterdam, 2007. Google Scholar

[18] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, The Clarendon Press, Oxford University Press, New York, 1998. Google Scholar
[19]

D.-H. ChenR.-N. Wang and Y. Zhou, Nonlinear evolution inclusions: Topological characterizations of solution sets and applications, J. Funct. Anal., 265 (2013), 2039-2073. doi: 10.1016/j.jfa.2013.05.033. Google Scholar

[20]

Y. Chen, Anti-periodic solutions for semilinear evolution equations, J. Math. Anal. Appl., 315 (2006), 337-348. doi: 10.1016/j.jmaa.2005.08.001. Google Scholar

[21]

A. Ćwiszewski, Topological degree methods for perturbations of operators generating compact $C_0$ semigroups, J. Differential Equations, 220 (2006), 434-477. doi: 10.1016/j.jde.2005.04.007. Google Scholar

[22]

A. Ćwiszewski, Positive periodic solutions of parabolic evolutions problems: a translation along trajectories approach, Cent. Eur. J. Math., 9 (2011), 244-268. doi: 10.2478/s11533-011-0010-6. Google Scholar

[23]

A. Ćwiszewski and P. Kokocki, Krasnosel'skii type formula and translation along trajectories method for evolution equations, Discrete Contin. Dyn. Syst., 22 (2008), 605-628. doi: 10.3934/dcds.2008.22.605. Google Scholar

[24]

A. Ćwiszewski and W. Kryszewski, Constrained topological degree and positive solutions of fully nonlinear boundary value problems, J. Differential Equations, 247 (2009), 2235-2269. doi: 10.1016/j.jde.2009.06.025. Google Scholar

[25]

N. Dancer, Degree theory on convex sets and applications to bifurcation, in Calculus of Variations and Partial Differential Equations (Pisa, 1996), (eds. G. Buttazzo. A. Marino and M. K. V. Murthy), Springer, Berlin, (2000), 185-225. doi: 10.1007/978-3-642-57186-2_8. Google Scholar

[26]

J. DiestelW. M. Ruess and W. Schachermayer, On weak compactness in $L^1(μ, X)$, Proc. Amer. Math. Soc., 118 (1993), 447-453. doi: 10.2307/2160321. Google Scholar

[27]

A. Djebali, L. Górniewicz and A. Ouahab, Solution Sets for Differential Equations and Inclusions Walter de Gruyter & Co., Berlin, 2013. doi: 10.1515/9783110293562. Google Scholar

[28]

K. -J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations Springer-Verlag, New York, 2000. Google Scholar

[29]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides Kluwer Academic Publishers Group, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9. Google Scholar

[30]

D. Gabor and W. Kryszewski, A global bifurcation index for set-valued perturbations of Fredholm operator, Nonlinear Anal., 73 (2010), 2714-2736. doi: 10.1016/j.na.2010.06.055. Google Scholar

[31]

L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings Springer, Dordrecht, 2006. Google Scholar

[32]

L. Górniewicz, Topological structure of solution sets: Current results, Arch. Math. (Brno), 36 (2000), 343-382. Google Scholar

[33]

A. Granas and J. Dugundji, Fixed Point Theory Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8. Google Scholar

[34]

N. Hirano and N. Shioji, Invariant sets for nonlinear evolution equations, {C}auchy problems and periodic problems, Abstr. Appl. Anal., 3 (2004), 183-203. doi: 10.1155/S1085337504311073. Google Scholar

[35]

S. T. Hu and N. S. Papageorgiou, Handbook of multivalued analysis. Vol. I Kluwer Academic Publishers, Dordrecht, 1997. doi: 10.1007/978-1-4615-6359-4. Google Scholar

[36]

S. T. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. II Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-1-4615-4665-8_17. Google Scholar

[37]

D. M. Hyman, On decreasing sequences of compact absolute retracts, Fund. Math., 64 (1969), 91-97. doi: 10.4064/fm-64-1-91-97. Google Scholar

[38]

M. JuniewiczH. T. Nguyen and J. Ziemińska, Carathéodory CM-selectors for oppositely semicontinuous multifunctions of two variables, Bull. Pol. Acad. Sci. Math., 50 (2002), 47-57. Google Scholar

[39]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces Walter de Gruyter & Co., Berlin, 2001. doi: 10.1515/9783110870893. Google Scholar

[40]

A. Kanigowski and W. Kryszewski, Perron-Frobenius and Krein-Rutman theorem for tangentially positive operators, Centr. Eur. J. Math., 10 (2012), 2240-2263. doi: 10.2478/s11533-012-0118-3. Google Scholar

[41]

M. A. Krasnosel'skiǐ and P. P. Zabreǐko, Geometrical Methods of Nonlinear Analysis Springer-Verlag, Berlin, 1984. Google Scholar

[42]

W. Kryszewski and J. Siemianowski, The Bolzano mean-value theorem and partial differential equations, J. Math. Anal. Appl., 457 (2018), 1452-1477. doi: 10.1016/j.jmaa.2017.01.040. Google Scholar

[43]

A. Kucia, Scorza Dragoni type theorems, Fund. Math., 138 (1991), 197-203. doi: 10.4064/fm-138-3-197-203. Google Scholar

[44]

R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc., 83 (1977), 495-552. doi: 10.1090/S0002-9904-1977-14321-8. Google Scholar

[45]

V. Obukhovski, P. P. Zecca, N. Van Loi and S. Kornev, Method of Guiding Functions in Problems of Nonlinear Analysis Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-37070-0. Google Scholar

[46]

N. H. Pavel, Invariant sets for a class of semi-linear equations of evolution, Nonlinear Anal., 1 (1977), 187-196. doi: 10.1016/0362-546X(77)90009-8. Google Scholar

[47]

N. H. Pavel, Differential Equations, Flow Invariance and Applications, Research Notes in Mathematics, 113. Boston–London–Melbourne: Pitman Advanced Publishing Program, 1984. Google Scholar

[48]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[49]

J. Prüss, Periodic solutions of semilinear evolution equations., Nonlinear Anal., 3 (1979), 601-612. doi: 10.1016/0362-546X(79)90089-0. Google Scholar

[50]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations American Mathematical Society, Providence, RI, 1997. Google Scholar

[51]

I. I. Vrabie, Compactness Methods for Nonlinear Evolutions Longman Scientific & Technical, Harlow, 1995. Google Scholar

[52]

I. I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc., 109 (1990), 653-661. doi: 10.1090/S0002-9939-1990-1015686-4. Google Scholar

[1]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[2]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[3]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[4]

Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309

[5]

Aleksander Ćwiszewski, Piotr Kokocki. Krasnosel'skii type formula and translation along trajectories method for evolution equations. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 605-628. doi: 10.3934/dcds.2008.22.605

[6]

Robert Baier, Thuy T. T. Le. Construction of the minimum time function for linear systems via higher-order set-valued methods. Mathematical Control & Related Fields, 2019, 9 (2) : 223-255. doi: 10.3934/mcrf.2019012

[7]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[8]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[9]

Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial & Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1

[10]

Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246

[11]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[12]

Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548

[13]

Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435

[14]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[15]

Francesca Faraci, Antonio Iannizzotto. Three nonzero periodic solutions for a differential inclusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 779-788. doi: 10.3934/dcdss.2012.5.779

[16]

Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032

[17]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[18]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[19]

Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861

[20]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (42)
  • HTML views (69)
  • Cited by (0)

[Back to Top]